

Z80®
Assembly Language
Subroutines

Z80®
Assembly Language
Subroutines

Lance A. Leventhal
Winthrop Saville

Osborne/McGraw-Hill
Berkeley, California

Disclaimer of Warranties and Limitation of Liabilities

The authors have taken due care in preparing this book and the programs in it,
including research, development, and testing to ascertain their effectiveness. The
authors and the publisher make no expressed or implied warranty of any kind with
regard to these programs or the supplementary documentation in this book. In no
event shall the authors or the publisher be liable for incidental or consequential
damages in connection with or arising out of the furnishing, performance, or use of
any of these programs.

Z80 is a registered trademark of Zilog, Inc.

ZID and ZSID are trademarks of Digital Research Corp.

ED is a product of Digital Research Corp.

IBM is a registered trademark of IBM.

Teletype is a registered trademark of Teletype Corp.

Published by
Osborne/McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A., please write to Osborne/
McGraw-Hill at the above address.

Z80® ASSEMBLY LANGUAGE SUBROUTINES
Copyright ©1983 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or retrieval system, without the prior
written permission of the publisher, with the exception that the program listings may be entered, stored,
and executed in a computer system, but they may not be reproduced for publication.

234567890 DODO 8987654

ISBN 0-931988-91-8

Cover by Jean Lake

Text design by Paul Butzler

Contents

Preface Vll

1 General Programming Methods

2 Implementing Additional Instructions and Addressing Modes 71

3 Common Programming Errors 139

Introduction to the Program Section 161

4 Code Conversion 167

5 Array Manipulation and Indexing 195

6 Arithmetic 217

7 Bit Manipulation and Shifts 267

8 String Manipulation 288

9 Array Operations 319

10 Input/Output 356

11 Interrupts 394

A Z80 Instruction Set Summary 433

B Programming Reference for the Z80 PIO Device 457

C ASCII Character Set 463

Glossary 465

Index 489

v

r face

This book is intended to serve as a source and a reference for the assembly language
programmer. It contains an overview of assembly language programming for a partic
ular microprocessor and a collection of useful subroutines. In the subroutines, a
standard format, documentation package, and parameter passing techniques were
used. The rules ofthe most popular assemblers have been followed, and the purpose,
procedure, parameters, results, execution time, and memory usage of each routine
have been described.

The overview sections summarize assembly language programming for those who
do not have the time or need for a complete textbook; the Assembly Language
Programming series provides more extensive discussions. Chapter I introduces
assembly language programming for the particular processor and summarizes the
major features that make this processor different from other microprocessors and
minicomputers. Chapter 2 shows how to implement instructions and addressing
modes that are not explicitly available. Chapter 3 describes common programming
errors.

The collection of subroutines emphasizes common tasks that occur in many applica
tions. These tasks include code conversion, array manipulation, arithmetic, bit
manipulation, shifting functions, string manipulation, sorting, and searching. We
have also provided examples of 110 routines, interrupt service routines, and initializa
tion routines for common family chips such as parallel interfaces, serial interfaces, and
timers. You should be able to use these programs as subroutines in actual applications
and as starting points for more complex programs.

This book is intended for the person who wants to use assembly language imme
diately, rather than just learn about it. The reader could be

. An engineer, technician, or programmer who must write assembly language
programs for a design project.

A microcomputer user who wants to write an 110 driver, a diagnostic program, a
utility, or a systems program in assembly language.

vii

viii Z80 ASSEMBLY LANGUAGE SUBROUTINES

· An experienced assembly language programmer who needs a quick review of
techniques for a particular microprocessor.

· A systems designer who needs a specific routine or technique for immediate use.

· A high-level language programmer who must debug or optimize programs at the
assembly level or must link a program written in a high-level language to one
written in assembly language.

· A maintenance programmer who must understand quickly how specific assembly
language programs work.

· A microcomputer owner who wants to understand the operating system for a
particular computer or who wants to modify standard 110 routines or systems
programs.

· A student, hobbyist, or teacher who wants to see examples of working assembly
language programs.

This book can also serve as a supplement for students of the Assembly Language
Programming series.

This book should save the reader time and effort. The reader should not have to
write, debug, test, or optimize standard routines or search through a textbook for
particular examples. The reader should instead be able to obtain easily the specific
information, technique, or routine that he or she needs. This book has been organized
and indexed for rapid use and reference.

Obviously, a book with such an aim demands feedback from its readers. Although
all the programs have been thoroughly tested and carefully documented, please inform"
the publisher if you find any errors. If you have suggestions for better methods or for
additional topics, routines, programming hints, or index entries, please tell us about
them. We have used our programming experience to develop this book, but your help
is needed to improve it. We would greatly appreciate your comments, criticisms, and
suggestions.

NOMENCLATURE

We have used the following nomenclature in this book to describe the architecture of
the Z80 processor, to specify operands, and to represent general values of numbers and
addresses.

PREFACE ix

zao Architecture

Byte-length registers include

A (accumulator) R (refresh)
B A'
C B'
D C'
E D'
H E'
L H'
F (flags) L'
I (interrupt vector) F'

Of these, the primary user registers are the first seven: A, B, C, D, E, H, and L. The I
(interrupt vector) register contains the more significant byte (page number) of inter
rupt service addresses in Interrupt Mode 2. The R (refresh) register contains a memory
refresh counter. The F (flag) register consists of a set of bits with independent functions
and meanings, organized as shown in the following diagram:

Carry
Addl Subtract
ParityIOverflow
Not Used (Logic I)
Auxiliary Carry
Not Used (Logic I)
Zero
Sign

o--Bit Number

Processor Status Register F

7 6 5 4 3 2

I S I Z I X IAcl X Ip/OI N IC --

f

Register pairs and word-length registers include

AF (Accumulator and flags, accumulator most significant)
AF' (Registers A' and F', A' most significant)
BC (Registers Band C, B most significant)
BC' (Registers B' and C', B' most significant)
DE (Registers D and E, D most significant)
DE' (Registers D' and E', D' most significant)
HL (Registers Hand L, H most significant)
HL' (Registers H' and L', H' most significant)
IX (Index register X or IX)
IY (Index register Y or IY)
PC (Program counter)
SP (Stack pointer)

Flags include

Addl Subtract (N)
Carry (C)
Auxiliary Carry (Ac)

END
EQU
ORG

DEFL
DEFM
DS or DEFS
DW or DEFW

X Z80 ASSEMBLY LANGUAGE SUBROUTINES

Parity/ Overflow (P/0 or P/ V)
Sign (S)
Zero (Z)

These flags are arranged in the F register as shown previously.

Miscellaneous facilities include

Interrupt Flip-flop I (lFFI)
Interrupt Flip-flop 2 (lFF2)

zao Assembler

Delimiters include

After a label, except for EQU, DEFL, and MACRO, which require a space
space After an operation code

Between operands in the operand (address) field
Before a comment

(,) Around memory references

All operands are treated as data unless they are enclosed in parentheses.

Pseudo- Operations include

DB or DEFB Define byte; place byte-length data in
memory.

Define label (may be redefined later).
Define string; place ASCII data in memory.
Define storage; allocate bytes of memory.
Define word; place word-length data in

memory.
End of program.
Equate; define the attached label.
Set origin; place subsequent object code

starting at the specified address.

Designations include

Number systems:

B (suffix) Binary
D (suffix) Decimal
H (suffix) Hexadecimal
Q (suffix) Octal

The default mode is decimal; hexadecimal numbers must start with a digit (you must
add a leading zero if the number starts with a letter).

Others:

, , or " "ASCII (characters surrounded by single or double quotation marks)
$ Current value of location (program) counter

General Nomenclature

PREFACE xi

ADDR
ADDRI
ADDR2
BASE
BICON
CONST
DEST

HIGH
INDIR

LOW
MASK
n

NPARAM
NEXT
NRESLT
NTIMES
NTIML
NTIMM
NUM
NUMI
NUM2
OFF
OFFSET
oper

OPER
OPERI
OPER2
reg
reg I
RETPT
rp
rph
rpI
rpI
rplh
rpll
rp2
rp2h
rp21
SPTR
STRNG
SUM
TEMP
VALl6
VALl6H
VALl6L
VALUE
xy

A 16-bit address in data memory
A 16-bit address in data memory
A 16-bit address in data memory
A constant 16-bit address in data memory
An 8-bit data item in binary format
A constant 8-bit data item
A 16-bit address in program memory, the

destination for a jump instruction
A 16-bit data item
A 16.-bit address in data memory, the start

ing address for an indirect address. The
indirect address is stored in memory
locations INDIR and INDIR+ I.

A 16-bit data item
An 8-bit number used for masking
A bit position in a byte; possible values are

othrough 7
A 16-bit data item
A 16-bit address in program memory
A 16-bit data item
An 8-bit data item
An 8-bit data item
An 8-bit data item
A 16-bit data item
A 16-bit address in data memory
A 16-bit address in data memory
An 8-bit fixed offset
An 8-bit fixed offset
An 8-bit data item, a register, (HL), or an

indexed address
A 16-bit address in data memory
A 16-bit address in data memory
A 16-bit address in data memory
A primary user register (A, B, C, D, E, H, or L)
A primary user register
A 16-bit address in program memory
A primary register pair (BC, DE, or HL)
The more significant byte of rp
The less significant byte of rp
A primary register pair
The more significant byte of rp I
The less significant byte of rp I
Another primary register pair, not the same as rp I
The more significant byte of rp2
The less significant byte of rp2
A 16-bit address in data memory
A 16-bit address in data memory
A 16-bit address in data memory
A 16-bit address in data memory
A 16-bit data item
The more significant byte of VALl6
The less significant byte of VALl6
An 8-bit data item
An index register, either IX or IY

Chapter 1 General
Programming Methods

Some general methods for writing assembly language programs for the Z80 micro
processor are presented in this chapter. In addition, techniques for performing the
following operations are explained:

· Loading and saving registers

· Storing data in memory

· Arithmetic and logical functions

· Bit manipulation and testing

Testing for specific values

· Numerical comparisons

· Looping (repeating sequences of operations)

· Array processing and manipulation

· Table lookup

· Character code manipulation

· Code conversion

· Multiple-precision arithmetic

· Multiplication and division

· List processing

· Processing of data structures.

Also included in this chapter are special sections that describe passing parameters to
subroutines, general methods for writing 110 drivers and interrupt service routines,
and ways of making programs run faster or use less memory.

The operations described are required in such applications as instrumentation, test
equipment, computer peripherals, communications equipment, industrial control,
process control, business equipment, aerospace and military systems, and consumer
products. Microcomputer users will employ these operations in writing 110 drivers,
utility programs, diagnostics, and systems software, and in understanding, debugging,
and improving programs written in high-level languages. This chapter provides a brief

1

2 ZSO ASSEMBLY LANGUAGE SUBROUTINES

guide to Z80 assembly language programming for those who have an immediate
application in mind.

SUMMARY FOR EXPERIENCED PROGRAMMERS

For those who are familiar with assembly language programming on other comput
ers, we provide here a brief review of the peCUliarities of the Z80. Being aware of these
unusual features can save a lot of time and trouble.

1. Arithmetic and logical operations are allowed only between the accumulator and
a byte of immediate data, the contents ofa general-purpose register, the contents of the
address in register pair HL, or the contents of an indexed address. Arithmetic and
logical instructions do not allow direct addressing.

For example, the alternatives for the OR instruction are OR CONST, where CONST
is a fixed data byte; OR reg, where reg is an 8-bit general-purpose register; OR (HL);
and OR (xy+OFF). The third alternative logically ORs the accumulator with the data
byte located at the address in HL. The fourth alternative logically ORs the accumula
tor with the data byte located at an indexed address; the processor determines the
address by adding the 8-bit offset OFF to a 16-bit index register.

2. The accumulator and register pair HL are special. The accumulator is the only
byte-length register that can be loaded or stored directly. The accumulator is also the
only register that can be complemented, negated, shifted with a single-byte instruction,
loaded indirectly from the addresses in register pairs BC or DE, stored indirectly at the
addresses in register pairs BC or DE, or used in IN and OUT instructions with direct
addressing.

HL is the only register pair that can serve as an indirect address in arithmetic or logi
cal instructions or in loading or storing registers other than the accumulator. HL is also
the only register pair that can be transferred to the program counter or stack pointer.
Furthermore, HL serves as a double-length accumulator in 16-bit addition and sub
traction. Register pair DE is also special because the instruction EX DE,HL can
exchange it with HL. Thus, the Z80's registers are highly asymmetric, and the pro
grammer must carefully choose which data and addresses go in which registers.

3. There are often several names for the same physical register. The registers A, B,
C, D, E, H, and L are all available as 8-bit registers. The register pairs BC (B more
significant), DE (D more significant), and HL (H more significant) are also available
as 16-bit register pairs in many instructions. The terms "register pair B,''''registers B
and C," and "register pair BC" all have the same meaning, and there are similar
variations for registers D and E and Hand 1,. Note that the register pair and the two
single registers are physically identical and cannot be used for different purposes at the
same time.

CHAPTER 1 GENERAL PROGRAMMING METHODS 3

In fact, Hand L are almost always used to hold an indirect address because of the
availability of instructions that access the data at that address as well as special
instructions like LD SP,HL; JP (HL); EX (SP),HL; and EX DE,HL. Register pair DE
is used for a second address when one is needed because ofthe EX DE,HL instruction.
Registers Band C are generally used as separate 8-bit registers for temporary data
storage and counters.

4. The effects of instructions on flags are extremely inconsistent. Some particularly
unusual effects are (a) logical instructions clear the Carry, (b) one-byte accumulator
rotate instructions affect no flags other than the Carry, (c) load, store, transfer,
increment register pair or index register, and decrement register pair or index register
instructions affect no flags at all, and (d) I6-bit addition (ADD HL or ADD xy) affects
only the Carry flag. Table A-I in Appendix A can be used as an aid in determining how
an instruction affects the flags.

5. There is no indirect addressing through memory locations. The lack of indirect
addressing is overcome by loading the indirect address into register pair HL. Thus,
indirect addressing is a two-step process. The indirect address can also be loaded into
registers pair BC or DE, but it can then only be used to load or store the accumulator.

6. The Z80's indexing allows only an 8-bit fixed offset in the instruction. Its main
purpose is to implement postindexing and to allow offsets in data structures. A more
general form of indexed addressing requires an explicit 16-bit addition of register pairs
using HL as a I6-bit accumulator. Thus, indexing usually requires several steps: The
index must be loaded into one register pair, the base address must be loaded into
another register pair (one pair must be HL), the two must be added explicitly (using
ADD HL,rp), and the sum must be used as an indirect address (by referring to (HL».
Generalized indexing on the Z80 is a long, awkward process.

7. There is a combined Parity/Overflow indicator. This flag indicates even parity
after all instructions that affect it except addition and subtraction. Then it indicates the
occurrence of two's complement overflow.

8. Many common instructions are missing but can easily be simulated with register
operations. Some examples are clearing the accumulator (use SUB A or XOR A),
clearing the Carry flag (use AND A or OR A), and logically shifting the accumulator
left (use ADD A,A). Either AND A or OR A clears the Carry flag and sets the other
flags according to the contents of the accumulator. But remember, loading a register
does not affect any flags.

9. There are both relative and absolute branches (using the operation codes JR and
JP, respectively). Both addressing methods are allowed for unconditional branches.
The sets of conditional branches differ; relative branches exist only for the Carry and
Zero flags, whereas absolute branches exist for the Carry, Sign, Parity/Overflow, and
Zero flags. What is interesting here is that the relative branches occupy less memory

4 Z80 ASSEMBLY LANGUAGE SUBROUTINES

than the corresponding absolute branches (2 bytes rather than 3) but execute more
slowly if the branch is taken (12 cycles rather than 10).

10. Increment and decrement instructions behave differently, depending on whether
they are applied to 8-bit or l6-bit operands. Decrementing or incrementing an 8-bit
register affects all flags except the Carry. Decrementing or incrementing a I6-bit
register pair or index register does not affect any flags at all. A I6-bit register pair can
be used as a counter, but the only way to test the pair for zero is to logically OR the two
bytes together in the accumulator. The I6-bit instructions are intended primarily for
address calculations, not for data manipulation.

11. Instructions that are additions to the original 8080 instruction set occupy more
memory and execute more slowly than other instructions with similar functions and
addressing modes. Among them are bit manipulation, arithmetic shift, logical shift,
shifts of registers other than the accumulator, and some loads. These instructions
execute more slowly because they require a prefix byte that tells the processor the
instruction is not an original 8080 instruction and the next byte is the real operation
code. Weller makes it easier to recognize the secondary instructions by using mnemon
ics derived from the 8080 instruction set. I

12. Certain registers and facilities are clearly secondary in importance. The pro
grammer should employ them only when the primary registers and facilities are
already in use or too inconvenient to use. The secondary facilities, like the secondary
instructions, represent additions to the underlying 8080 microprocessor. The most
important additions are index registers IX and IY; many instructions use these
registers, but they take more memory and much more time than instructions that use
the other register pairs. Another addition is the primed register set. Only two instruc
tions (EX 'AF,AF' and EXX) allow access to the primed set, and for this reason
programmers generally reserve it for fun~tions such as fast interrupt response.

13. Operations that can be done directly to a general-purpose register are shift it,
transfer it to or from another register, load it with a constant, increment it by 1, or
decrement it by 1. These operations can also be performed indirectly on the memory
address in HL or on a memory location addressed via indexing.

14. Only register pairs or index registers can be moved to or from the stack. One
pair is AF: which consists of the accumulator (more significant byte) and the flags (less
significant byte). The CALL and RET instructions transfer addresses to or from the
stack; there are conditional calls and returns but they are seldom used.

15. The Z80 has a readable interrupt enable flag. One can determine its value by
executing LD A,I or LD A,R. Either instruction moves the Interrupt flip-flop to the
Parity / Overflow flag. That flag then reflects the state of the interrupt system at a
particular time, and thus can be used to restore the state after the processor executes
code that must run with interrupts disabled.

CHAPTER "1 C;Ei'JERfll PROGI7AMMING METHODS 5

16. The Z80 uses the following common conventions:

· The 16-bit addresses are stored with the less significant byte first (that is, at the
lower address). The order of the bytes in an address is the same as in the 8080, 8085, and
6502 microprocessors, but the opposite of that used in the 6800 and 6809.

· The stack pointer contains the lowest address actually occupied by the stack. This
convention is also used in the 8080, 8085, and 6809 microprocessors, but the obvious
alternative (next available address) is used in the 6502 and 6800. Z80 instructions store
data in the stack using predecrementing (they subtract I from the stack pointer before
storing a byte) and load data from the stack using postincrementing (they add I to the
stack pointer after loading a byte).

· The interrupt (enable) flag is I to allow interrupts and 0 to disallow them. This
convention is the same as in the 8080 and 8085, but the opposite of that used in the
6502, 6800, and 6809.

REGISTER SET
Z80 assembly language programming is complicated by the asymmetry of the

processor's instruction set. Many instructions apply only to particular registers,
register pairs, or sets of registers. Almost every register has its own unique features,
and almost every instruction has its own peCUliarities. Table 1-1 lists the 8-bit registers
and the instructions that use them. Table 1-2 lists the 16-bit registers and the instruc
tions that use them (of course, all instructions change the program counter implicitly).
Table 1-3 lists the indirect addresses contained in on-board register pairs and the
instructions that use them. Table 1-4 lists the instructions that apply only to the
accumulator, and Table 1-5 lists the instructions that apply only to particular 16-bit
registers. Table 1-6 lists the instructions that apply to the stack.

The general uses of the registers are as follows:

· The accumulator, the center of data processing, is the source of one operand and
destination of the result for most arithmetic, logical, and other processing operations.

· Register pair HL is the primary memory address register. Instructions can often
refer to the data at the address in HL, that is, (HL).

· Register pair DE is the secondary memory address register because the pro
grammer can exchange its contents with HL using EX DE,HL.

· Registers Band C (register pair BC) are general-purpose registers used mainly for
counters and temporary data storage. Register B is often used as a loop counter
because of its special usage in the DJNZ instruction.

· Index registers IX and IY are used when the programmer is referring to memory
addresses by means of fixed offsets from a variable base. These registers also serve as
backups to HL when that register pair is occupied.

6 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Table 1·1. Eight-Bit Registers and Applicable Instructions

8-Bit Register Instructions

A only CPL, DAA; IN A,(port); LD (ADDR),LD (BC or DE), NEG;
OUT (port),A; RLA, RLCA, RLD, RRA, RRCA, RRD.

A,B,C,D,E,H,L ADC A; ADD A; AND, CP, DEC; IN reg,(C); INC, LD, OR;
OUT (C),reg; RL, RLC, RR, RRC, SBC A; SLA, SRA,
SRL, SUB, XOR

B only DJNZ, IND, INDR, INI, INIR, OTDR, OTIR, OUTD, OUT!

Conly IN reg,(C); OUT (C), reg; IND, INDR, INI, INIR, OTDR,
OTIR, OUTD, OUTI

F (flags) CCF, SCF (see also AF register pair)

I (interrupt vector) LD I,A; LD A,I

R (refresh) LD R,A; LD A,R

Table 1·2. Sixteen-Bit Registers and Applicable Instructions

16·Bit Register Instructions

AF POP; PUSH; EX AF,AF'

AF' EX AF,AF'

BC ADC HL, ADD xy, ADD HL, CPD, CPDR, CPI, CPIR,
DEC, EXX, INC, LD, LDD, LDDR, LDI, LDIR, POP,
PUSH, SBC HL

BC' EXX

DE ADC HL, ADD xy, ADD HL, DEC; EX DE,HL; EXX, INC,
LD, LDD, LDDR, LDI, LDIR, POP, PUSH, SBC HL

DE' EXX

HL ADC HL, ADD HL, CPD, CPDR, CPI, CPIR, DEC; EX
DE,HL; EX (SP),HL; EXX, INC, IND, INDR, INI, INIR,
LD, LDD, LDDR, LDI, LDIR, OTDR, OTIR, OUTD,
OUTI, POP, PUSH, SBC HL

HL' EXX

IX ADD IX, LD, POP, PUSH; EX (SP),IX

IY ADD IY, LD, POP, PUSH; EX (SP),IY

Program Counter CALL instructions, JP, JR, RETURN instructions, RETI,
RETN,RST

Stack Pointer CALL instructions, ADD HL, DEC, INC, LD, POP, PUSH,
RETURN instructions, RST

CHAPTER 1 GENERAL PROGRAMMING METHODS 7

Table 1-3. Indirect Addresses and Applicable Instructions

Location of Address Instructions

Register pair BC LD A,(BC); LD (BC),A

Register pair DE LD A,(DE); LD (DE),A

Register pair HL* ADC A; ADD A; AND, CP, DEC, INC, JP, LD, OR, SBC
A; SUB, XOR

Stack Pointer CALL instructions, POP, PUSH, RETURN instructions,
RST

Index register
X or Y JP

* Index register X or Y can also be used as an indirect address for the same instructions as HL by
specifying indexed addressing with a fixed offset of zero.

Table 1-4. Instructions That Apply Only to the Accumulator

Instruction Function

ADCA Add with carry

ADDA Add

AND Logical AND immediate

CPL One's complement

CP Compare

DAA Decimal adjust (decimal correction)

IN A,(port) Input direct

LD A,(ADDR) Load direct

LD A,(rp) Load indirect

NEG Two's complement (negate)

OR Logical OR

OUT (port),A Output direct

RLA Rotate accumulator left through carry

RLCA Rotate accumulator left

RRA Rotate accumulator right through carry

RRCA Rotate accumulator right

SBC A Subtract with borrow

SUB Subtract

XOR Logical EXCLUSIVE OR

-

8 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Table 1·5. Instructions That Apply Only to One or Two 16-Bit Registers

Instruction 16-Bit Registers Function

EX AF,AF' AF,AF' Exchange program status with alternate
program status

EX DE,HL DE,HL Exchange HL with DE

EX (SP),HL HL Exchange HL with top of stack

EX (SP),xy IX or IY Exchange index register with top of stack

1,0 SP,HL HL,SP Load stack pointer from HL

1,0 SP,xy IX or IY,SP Load stack pointer from index register

Table 1·6. Instructions That Use the Stack

Instruction Function

Call instructions Jump and save program counter in stack (including
conditionals)

EX (SP),HL Exchange HL with top of stack

EX (SP),xy Exchange index register with top of stack

POP Load register pair from stack

PUSH Store register pair in stack

RETURN instructions Load program counter from stack (including
conditionals)

RST Jump to vector address and save program
counter in stack

We may describe the special features of particular registers as follows:

. Accumulator. Only single register that can be loaded or stored directly. Only 8-bit
register that can be shifted with a one-byte instruction. Only register that can be
complemented, decimal adjusted, or negated with a single instruction. Only register
that can be loaded or stored using the addresses in register pairs BC or DE. Only
register that can be stored in an output port or loaded from an input port using direct
addressing. Source and destination for all 8-bit arithmetic and logical instructions
except DEC and INC. Only register that can be transferred to or from the interrupt
vector (I) or refresh (R) register.

. Register pair HL. Only register pair that can be used indirectly in the instructions
ADC, ADD, AND, CMP, DEC, INC, OR, SBC, SUB, and XOR. Source and
destination for the instructions ADC HI.., ADD HL, and SBC HL. Only register pair

CHAPTER 1 GENERAL PROGRAMMING METHODS 9

that can be exchanged with register pair DE or with the top of the stack. Only register
pair that can have its contents moved to the stack pointer (LD SP,HL) or the program
counter (lP (HL». Only register pair that can be shifted with a single instruction
(ADD HL,HL). Automatically used as a source address register in block move, block
compare, and block output instructions. Automatically used as a destination address
register in block input instructions.

· Register pair DE. Only register pair that can exchanged with HL (EX DE,HL).
Automatically used as a destination address register in block move instructions.

· Register pair BC. Automatically used as a counter in block move and block
compare instructions.

· Register B. Automatically used as a counter in the D1NZ instruction and in block
input and output instructions.

· Register C. Only register that can be used as an indirect port address for input and
output. Automatically used as a port address in block input and output instructions.

· Index registers IX and IY. Only address registers that allow an indexed offset.
Used as source and destination in ADD xy instruction. Can be exchanged with the top
of the stack, moved to the stack pointer or program counter, or shifted with ADD
XY,xy.

· Stack pointer. Automatically post incremented by instructions that load data from
the stack and predecremented by instructions that store data in the stack. Only address
register that can be used to transfer other register pairs to or from memory (PUSH and
POP) or to transfer the program counter to or from memory (CALL instructions and
RETURN instructions).

Note the following:

· The A register is the only 8-bit register that can be loaded from memory or stored
in memory using direct addressing.

· Only the address in register pair HL or an address obtained via indexing can be
used in operations other than loading and storing the accumulator. That is, only the
data at the address in HL or at an indexed address can be moved to or from a user
register, decremented, incremented, or used in arithmetic and logical operations.

· Only DEC reg and INC reg perform 8-bit arithmetic operations without involving
the accumulator (of course, DEC and INC may be applied to the accumulator).

· Only index registers IX and IY allow an offset from a base address. The data at the
indexed address can be used like the data at the address in HL.

· The index registers IX and IY make useful backups to HL because of the
availability of the 16-bit instructions ADD xy; EX (SP),xy; lP (xy); and LD SP,xy.

10 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Register Transfers

The LD instruction can transfer any 8-bit general-purpose register (A, B, C, 0, E, H,
or L) to any other 8-bit general-purpose register. The flag (F) register can only be
transferred to or from the stack along with the accumulator (PUSH AF and POP AF).
Register pairs OE and HL can be exchanged using EX OE,HL.

The common transfer instructions are

· LO A,reg transfers the contents of reg to the accumulator

· LO reg,A transfers the contents of the accumulator to reg

LO reg,(HL) loads reg with the contents of the memory address in register pair HL

· LO (HL),reg stores reg at the memory address in register pair HL

· EX DE,HL exchanges register pair DE with HL.

The destination always comes first in the operand field of LD. That is, LO regl,reg2
transfers the contents of reg2 to regl, the opposite of the convention proposed in IEEE
Standard 694 for assembly language instructions.2 The LD changes the destination,
but leaves the source as it was. Note that EX DE,HL changes all four registers (0, E,
H, and L); it is thus equivalent to four LOs plus some intermediate steps that save one
byte of data while transferring another.

LOADING REGISTERS FROM MEMORY

The Z80 microprocessor has five addressing modes that can be used to load registers
from memory. These addressing modes are: Direct (from a specific memory address),
Immediate (with a specific value), Indirect (from an address stored in a register pair),
Indexed (from an address obtained by adding a fixed offset to an index register), and
Stack (from the top of the stack).3

Direct loading of Registers

The accumulator, a primary register pair (BC, DE, or HL), the stack pointer, or an
index register can be loaded from memory using direct addressing.

Examples

1. LD A,(2050H)

This instruction loads the accumulator (register A) from memory location 205016.

CHAPTER 1 GENERAL PI<OGRAMMING METHODS 11

2. LD HL,(OAOOOH)

This instruction loads register L from memory location AOOO 16 and register H from
memory location. AOOl16 Note the standard Z80 practice of storing 16-bit numbers
with the less significant byte at the lower address, followed by the more significant byte.

3. LD SP,(9A12H)

This instruction loads the stack pointer from memory locations 9A 12 16(less signifi
cant byte) and 9A1316 (more significant byte).

Immediate Loading of Registers

Immediate addressing can be used to load any register, register pair, or index register
with a specific value. The register pairs include the stack pointer.

Examples

1. LD C,6

This instruction loads register C with the number 6. The 6 is an 8-bit data item, not a
16-bit address. Do not confuse the number 6 with the address 000616.

2. LD DE,15E3H

This instruction loads register D with 15 16 and register E with E316.

3. LD IY,OB7EEH

This instruction loads index register IY with B7EE16.

Indirect Loading of Registers

The instruction LD reg,(HL) can load any register from the address in register pair
HL. The instruction LD A,(rp) can load the accumulator using the address in a register
pair (BC, DE, or HL). Note that there is no instruction that loads a register pair
indirectly.

Examples

1. LD D,(HL)

This instruction loads register D from the memory address in register pair HL. The
assembly language instruction takes the form "LD destination register, source regis
ter"; the order of the operands is the opposite of that proposed for IEEE Standard
694.4

12 zao ASSEMBLY LANGUAGE SUBROUTINES

2. LD A,(BC)

This instruction loads the accumulator from the memory address in register pair
BC. Note that you cannot load any register except A using BC or DE indirectly.

Indexed Loading of Registers

The instruction 1,D A,(xy+OFFSET) loads the accumulator from the indexed
address obtained by adding the 8-bit number OFFSET to the contents of an index
register. Note that OFFSET is a fixed 8-bit number (its value is part of the program),
while the index register contains a 16-bit address that can be changed. 5 IfOFFSET= 0,
indexing is equivalent to indirection, but it is slower since the processor still must
perform the address addition.

Stack Loading of Registers

The instruction POP rp or POP xy loads a register pair or an index register from the
top of the stack and adjusts the stack pointer appropriately. One register pair for POP
rp is AF: which consists of the accumulator (more significant byte) and the flags (less
significant byte). No instructions load 8-bit registers from the stack or use the stack
pointer indirectly without changing it (although EX (SP),H1, and EX (SP),xy have no
net effect on the stack pointer since they transfer data both to and from the stack).

Examples

1. POP DE

This instruction loads register pair DE from the top of the stack and increments the
stack pointer by 2. Register E is loaded first.

2. POP IY

This instruction loads index register IY from the top of the stack and increments the
stack pointer by 2. The less significant byte of IY is loaded first.

The stack has the following special features:

· The stack pointer contains the address of the most recently occupied location.
The stack can be anywhere in memory.

· Data is stored in the stack using predecrementing-the instructions decrement
the stack pointer by 1before storing each byte. Data is loaded from the stack using
postincrementing-the instructions increment the stack pointer by 1after loading
each byte.

· As is typical with microprocessors, there are no overflow or underflow
indicators.

CHAPTER 1 GENERAL Pi<OGRAMMING METHODS 13

STORING REGISTERS IN MEMORY

The Z80 has four addressing modes that can be used to store registers in memory.
These modes are: Direct (at a specific memory address), Indirect (at an address stored
in a register pair), Indexed (at an address calculated by adding an 8-bit offset to the
contents of an index register), and Stack (at the top of the stack).

Direct Storage of Registers

Direct addressing can be used to store the accumulator, a register pair (BC, DE, or
HL), the stack pointer, or an index register.

Examples

1. LD (35C8H),A

This instruction stores the accumulator in memory location 35C816.

2. LD (203AH),HL

This instruction stores register L in memory location 203A 16 and register H in
memory location 203B16.

3. LD (OA57BH),SP

This instruction stores the stack pointer in memory locations A57B16 (less signifi
cant byte) and A57C 16 (more significant byte).

Indirect Storage of Registers

The instruction LD (HL),reg can store any register at the address in register pair
HL. The instruction LD (rp),A can store the accumulator at the address in a register
pair (BC, DE, or HL). Note that there is no instruction that stores a register pair
indirectly.

Examples

1. LD (HL),C

This instruction stores register C at the address in register pair HL. The form is
"move to address in HL from C."

2. LD (DE),A

This instruction stores the accumulator at the memory address in register pair DE.
Note that you cannot store any register except A using BC or DE indirectly.

14 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Indexed Storage of Registers

The instruction LD (xy+OFFSET),A stores the accumulator at the indexed address
obtained by adding the 8-bit number OFFSET to the contents of an index register. If
OFFSET = 0, the indexed address is simply the contents of the index register, and
indexing is reduced to a slow version of indirect addressing.

Stack Storage of Registers

The instruction PUSH rp or PUSH xy stores a register pair or an index register at
the top ofthe stack and adjusts the stack pointer appropriately. One register pair is AF:
consisting of the accumulator (more significant byte) and the flags (less significant
byte). There is no instruction that stores an 8-bit register in the stack.

Examples

1. PUSH BC

This instruction stores register pair BC at the top of the stack and decrements the
stack pointer by 2. Note that B is stored first, so C ends up at the top of the stack.

2. PUSH IX

This instruction stores index register IX at the top of the stack and decrements the
stack pointer by 2. Note that the less significant byte of IX is stored last, and thus it
ends up at the top of the stack.

OTHER LOADING AND STORING OPERATIONS

Other loading and storing operations require more than one instruction. Some
typical examples are

1. Direct loading of a register other than A.

LD A, (ADDR)
LD t"eg, A

An alternative is

LD HL,ADDR
LD reg, (HL)

The second approach leaves A unchanged, but makes HL an indirect addressing pair.
Of course, the address in HL would then be available for later use.

CHAPTER 1 GENEI<AL PI<OGRAMMING METHODS 15

2. Indirect loading of a register (from the address in memory locations INDIR and
INDIR+l).

LD HL, <INDIR)
LD reg, (HL)

;GET INDIRECT ADDRESS
;LOAD DATA INDIRECTLY

3. Direct storage of a register other than A.

LD A, t-eg
LD (ADDR), A

An alternative is

LD HL,ADDR
LD (HL) , reg

4. Indirect storage of a register (at the address in memory locations INDIR and
INDIR+l).

LD HL, <INDIR)
LD (HL),reg

;GET THE INDIRECT ADDRESS
;STORE DATA THERE

STORING VALUES IN RAM

The usual ways to initialize RAM locations are (1) through the accumulator, (2)
using register pair HL directly or indirectly, and (3) using an index register with a fixed
offset.

Examples

1. Store an 8-bit item (VALUE) in address ADDR.

LD A, VALUE
LD (ADDR),A

or
LD HL,ADDR
LD (HL),VALUE

If VALUE 0, we could use SUB A or XOR A instead of LD A, O. Note, however,
that SUB A or XOR A affects the flags, whereas LD A,O does not.

2. Store a 16-bit item (VAL16) in addresses ADDR and ADDR+ 1 (MSB in
ADDR+l).

LD HL,VAL16
LD (ADDR),HL

16 Z80 ASSEMBLY LANGUAGE SUBROUTINES

3. Store an 8-bit item (VALUE) at the address in memory locations INDIR and
INDIR+l.

LD
LD

HL, <INDIR)
(HL),VALUE

;GET INDIRECT ADDRESS
;STORE DATA INDIRECTLY

4. Store an 8-bit item (VALUE) nine bytes beyond the address in memory locations
INDIR and INDIR+ 1.

LD A, VALUE
LD xv, (INDIR) ;GET BASE ADDRESS
LD (xy+9),A ;STORE DATA 9 BYTES BEYOND BASE

Here the indirect address is the base address of an array or other data structure.

ARITHMETIC AND lOGICAl OPERATIONS

Most arithmetic and logical operations (addition, subtraction, AND, OR, EXCLU
SIVE OR, and comparison) can be performed only between the accumulator and an
8-bit register, a byte of immediate data, or a byte of data in memory addressed through
register pair HL or via indexing. Note that arithmetic and logical instructions do not
allow direct addressing. If a result is produced (comparison does not produce any), it
replaces the operand in the accumulator.

Examples

1. Logically OR the accumulator with register C.

OR C

OR C logically ORs register C with the accumulator and places the result in the
accumulator. The programmer only has to specify one operand; the other operand and
the destination of the result are always the accumulator.

2. Add register B to the accumulator.

ADD A,B

ADD A,B adds register B to the accumulator (register A) and places the result in the
accumulator. In the instructions ADC, ADD, and SBC, the programmer must specify
both operands. The reason is that the Z80 also has the instructions ADC HL (add
register pair to HL with carry), ADD HL (add register pair to HL), ADD xy (add
register pair or index register to index register), and SBC HL (subtract register pair
from HL with borrow). Note the inconsistency here: Both operands must be specified
in ADC, ADD, and SBC, but only one operand in SUB; furthermore, the Z80 has an
ADD xy instruction, but no ADC xy or SBC xy instruction. Since the 16-bit arithmetic
instructions are mainly intended for addressing, we will discuss them later.

CHAPTEr,! 1 GENERAL PROGRAMMING METHODS 17

3. Logicallv AND the accumulator with the binary constant BICON.

AND BICON

Immediate addressing is the default mode; no special operation code or designation is
necessary.

;SAVE SUM

;GET SECOND OPERAND

;GET FIRST OPERAND

;ADD SECOND OPERAND

4. Logically OR the accumulator with the data at the address in register pair HL.

OR (HL)

Parentheses indicate a reference to the contents of a memory address.
Other operations require more than one instruction. Some typical examples are:
. Add memory locations OPERI and OPER2, place sum in memory location SUM.

;GET FIRST OPERANDLD A, (OPERU
LD B,A
LD A, (OPER2)
ADD A,B
LD (SLIM), A

or

LD HL,OPERl
LD A, (HL)
LD HL,OPER2
ADD A, (HL)
LD HL,SlIM
LD (HL),A ;SAVE SLIM

We can shorten the second alternative considerably if the operands and the sum
occupy consecutive memory addresses. For example, if OPER2 OPERI + 1 and
SUM = OPER2 + 1, we have

LD HL,OPERl
LD A, (HL) ;GET FIRST OPERAND
INC HL
ADD A, (HL) ;ADD SECOND OPERAND
INC HL
LD (HL), A ;SAVE SUM

Add a constant (VALUE) to memory location OPER.

LD A, (OPER)
ADD A,VALUE
LD (OPER),A

or

LD HL,OPER
LD A, (HL)
ADD A,VALUE
LD (HL),A

18 Z80 ASSEMBLY LANGUAGE SUBROUTINES

If VALUE = 1, we can shorten the second alternative to

LD HL,OPER
INC (HL)

You can use DEC (HL) similarly without changing the accumulator, but both DEC
(HL) and INC (HL) affect all the flags except Carry.

BIT MANIPUlATION

The Z80 has specific instructions for setting, clearing, or testing a single bit in a
register or memory location. Other bit operations require a series of single-bit instruc
tions or logical instructions with appropriate masks. Complementing (CPL) applies
only to the accumulator. Chapter 7 contains additional examples of bit manipulation.

The specific bit manipulation instructions are

SET n,reg
RES n,reg
BIT n,reg

· Sets bit n of register reg

· Clears bit n of register reg

· Tests bit n of register reg, setting the Zero flag if that bit is 0 and clearing the Zero
flag if it is 1.

All three instructions can also be applied to (HL) or to an indexed address. Note that
the bit position is not a variable; it is part of the instruction. ()

Other bit operations can be implemented by applying logical instructions to the
accumulator as follows:

· Set bits to 1 by logically ORing them with l's in the appropriate positions.

· Clear bits by logically ANDing them with O's in the appropriate positions.

· Invert (complement) bits by logically EXCLUSIVE ORing them with l's in the
appropriate positions.

· Test bits (for all O's) by logically ANDing them with l's in the appropriate
positions.

This approach is inconvenient since the logical instructions can only be applied to
the accumulator. It does, however, allow the programmer to invert bits and change
several bits at the same time.

Examples

1. Set bit 6 of the accumulator.

SET 6,A

CHAPTER 1 GENERAL PROGRAMMING METHODS 19

or

OR 01000000B jSET BIT 6 BY ORING WITH 1

Logically GRing a bit with 0 leaves it unchanged.

2. Clear bit 3 of the accumulator.

RES 3 7 A

or

AND 11110111B jCLEAR BIT 3 BY ANDING WITH 0

Logically ANDing a bit with I leaves it unchanged.

3. Invert (complement) bit 2 of the accumulator.

XOR 00000100B jINVERT BIT 2 BY XORING WITH 1

Logically EXCLUSIVE GRing a bit with 0 leaves it unchanged. Here there is no
special bit manipulation instruction. Fortunately, setting and clearing bits are much
more common operations than complementing bits.

4. Test bit 5 of the accumulator. In other words, clear the Zero flag if bit 5 is 1, and
set it if bit 5 is O.

8IT 5 7A

or

AND 001000008 jTEST BIT 5 BY ANDING WITH 1

Note the inversion here in either alternative: The Zero flag is set to 1 if the bit is 0, and
to 0 if the bit is 1.

5. Set bit 4 of register D.

SET 4 7D

To use a logical function, we would have to load the data into the accumulator and
load the result back into register D.

6. Invert (complement) bit 7 of memory location ADDR.

LD A7 (ADDR)
XOR 10000000B
LD (ADDR) 7A

JGET DATA
jCOMPLEMENT BIT 7
jRETURN RESULT TO MEMORY

7. Set bit 0 of the memory location five bytes beyond the address in INDIR and
INDIR+1.

LD XY7(ADDR)
SET 0 7 (xy+5)

JOET INDIRECT ADDRESS
jSET BIT 0 OF BYTE 5

ze,O)\SSEMBLY lANGUAGE SUBROUTINES

You can change more than one bit at a time by using a series of bit manipulation
instructions or by using the logical functions with appropriate masks.

8. Set bits 4 and 5 of the accumulator.

OR 00110000B ;SET BITS 4 AND 5 BY ORING WITH 1

or

SET 4,A ;SET BIT 4 FIRST
SET 5,A ;AND THEN SET BIT 5

9. Invert (complement) bits 0 and 7 of the accumulator.

XOR 10000001B ,INVERT BITS 0 AND 7 BY XORING WITH 1

A handy shortcut to change bit 0 of a register or memory location is to use INC to set
it (if you know that it is 0) and DEC to clear it (if you know that it is 1). You can also use
either INC or DEC to complement bit 0 if you are not using the other bits of a register
or memory location. These shortcuts are useful when you are storing a single I-bit flag
in a register or memory location.

The Z80 has shift instructions that operate on any register or memory location.
Special instructions apply only to the accumulator, register pair HL, or an index
register. Chapter 7 contains further examples of shift operations.

The instructions RL and RR rotate a register or memory location and the Carry flag
as if they formed a 9-bit register. Figures 1-1 and 1-2 show the effects of RL and RR.
The instructions RLC and RRC rotate the register or memory location alone as shown
in Figures 1-3 and 1-4. The bit shifted off the end still appears in the Carry flag as well
as in the bit position at the other end. The instructions SLA and SRL perform logical
shifts (as shown in Figures 1-5 and 1-6) which fill the bit at the far right or left with a O.
SRA performs an arithmetic shift (see Figure 1-7) which preserves the sign bit by
extending (copying) it to the right. Note that RL and RR preserve the old Carry flag (in
either bit 0 or bit 7), whereas the other shift instructions destroy it.

Certain special instructions are shorter and faster than the regular shifts in specific
situations. One-byte circular shifts (RLA, RLCA, RRA, RRCA) apply only to the
accumulator. Adding a register to itself (ADD A,A; ADD HL,HL; ADD xy,xy) is
equivalent to a logical left shift, while adding a register to itself with Carry (ADC A,A
or ADC HL,HL) is equivalent to a left rotate through Carry.

Examples

1. Rotate accumulator right two positions without the Carry.
RRCA
RRCA

CHAPTER 1 GENERAL PROGRAMMING METHODS 21

Original contents of Carry flag and register or memory location
Carry Data

0~
After RL (rotate left through Carry)

Carry Data

~~

Figure 1·1. The RL (rotate left through Carry) instruction

Original contents of Carry flag and register or memory location
Carry Data

[5J~
After RR (rotate right through Carry)

Carry Data

~~

Figure 1·2. The RR (rotate right through Carry) instruction

Original contents of Carry flag and register or memory location
Carry Data

0~

After RLC (rotate left)

Carry Data

~~

Figure 1·3. The RLC (rotate left) instruction

22 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Original contents of Carry flag and register or memory location
Carry Data

0~

After RRC (rotate right)
Carry Data

~~

Figure 1-4. The RRC (rotate right) instruction

Original contents of Carry flag and register or memory location

After SLA (shift left arithmetic)

[9~

Figure 1·5. The SLA (shift left arithmetic) instruction

Original contents of Carry flag and register or memory location

0~
After SRL (shift right logical)

~~

Figure 1·6. The SRL (shift right logical) instruction

CHAPTER 1 GENERAL PROGRAMMING METHODS 23

Original contents of Carry flag and register or memory location

~~

After SRA (shift right arithmetic)

~~

Figure 1·7. The SRA (shift right arithmetic) instruction

Note the special form for the accumulator.

2. Shift accumulator left logically two positions.

SLA A
SLA A

A shorter, faster alternative is

ADD A,A
ADD A,A

The instruction ADD A,A is equivalent to a logical left shift of A. Note that ADD A,A
is a one-byte instruction, whereas SLA is always at least a two-byte instruction since it
is an addition to the 8080 instruction set.

3. Shift register C right logically one position.

SRL C

4. Shift register pair HL left logically two positions.

ADD HL,HL
ADD HL,HL

ADD HL, HL is a one-byte logical left shift of HL.
Shift instructions can also be applied to memory locations addressed either through

register pair HL or through indexing from IX or IY.

5. Shift memory location ADDR right one position, preserving the sign bit (bit 7).

LD HL,ADDR
SRA (HL)

Shifting while preserving the sign bit is called sign extension. A shift that operates in

24 Z80 ASSEMBLY LANGUAGE SUBROUTINES

this manner is called an arithmetic shift, since it preserves the sign of a two's comple
ment number. It can therefore be used to divide or normalize signed numbers.

6. Rotate right the memory location eight bytes beyond the address in INDIR and
INDIR+l.

LD
RR

Xy, (INDIR)
(xy+8)

:GET INDIRECT ADDRESS
:ROTATE BYTE 8 RIGHT

MAKING DECISIONS

In this section procedures are presented for making the following three types of
decisions:

· Branching if a bit is set or cleared

· Branching if two values are equal or not equal

· Branching if one value is greater or less than another.

The first type of decision allows the processor to sense the value of a flag, switch,
status line, or other binary (ON/ OFF) input. The second type of decision allows the
processor to determine whether an input or a result has a specific value (an input is a
specific command character or terminator, or a result is 0). The third type of decision
allows the processor to determine whether a value is above or below a numerical
threshold (a value is valid or invalid, or is above or below a warning level or setpoint).
Assuming that the primary value is in the accumulator and the secondary value (if
needed) is at address ADDR, the procedures are as follows.

CHAPTER 1 GENERAL PROGRAMMING METHODS 25

Branching set or Cleared Bit

Determine if a bit is set or cleared with the BIT instruction. The operands are the bit
position and the register or memory address (either the one in HL or one accessed via
indexing). The Zero flag reflects the bit value and can be used for branching.

Examples

1. Branch to DEST if bit 5 of the accumulator is 1.

BIT 5,A
·.JR NZ, DEST

JP (absolute addressing) can be used instead of JR (relative addressing). The Zero
flag is set to 1 if and only if bit 5 of A is O.

2. Branch to DEST if bit 2 of register C is O.

BIT 2,C
JR Z,DEST

3. Branch to DEST if bit 6 of memory location ADDR is 1.

LD HL,ADDR
BIT 6, (HL)
JR NZ,DEST

4. Branch to DEST if bit 3 of the memory location seven bytes beyond the address
in INDIR and INDIR+1 is O.

LD >:y, UNDIR)
BIT 3,(xy+7)
...JR Z,DEST

There are shortcuts for bits 0, 6, and 7 of the accumulator.

5. Branch to DEST if bit 7 of the accumulator is 1.

AND A
JP M,DEST

;ESTABLISH SIGN FLAG

There is no relative jump based on the Sign flag.

6. Branch to DEST if bit 6 of the accumulator is O.

ADD A,A
.JP P,DEST

;ESTABLISH SIGN FLAG FROM BIT 6

7. Branch to DEST if bit 0 of the accumulator is 1.

26 Z80 ASSEMBLY LANGUAGE SUBROUTINES

RRA
,JR C, DEST

;MOVE BIT 0 TO CARRY

Here we have the choice of either a relative or an absolute jump.

Branching Based on Equality

Determine if the value in the accumulator is equal to another value by subtraction.
The Zero flag is set to I if the values are equal. Compare instructions (CP) are more
useful than subtract instructions (SBC or SUB) because compares preserve the value in
the accumulator for later operations. Note, however, that the Z80 has a 16-bit subtract
with borrow instruction (SBC HL), but no 16-bit compare or subtract instruction.

Examples

1. Branch to DEST if the accumulator contains the number VALUE.

CP
....R

VALUE
Z,DEST

;DOES A CONTAIN VALUE?
;YES, BRANCH

2. Branch to DEST if the contents of the accumulator are not equal to the contents
of memory location ADDR.

LD HL,ADDR
CP (HL) ;IS A THE SAME AS DATA IN MEMORY?
,JR NZ, DEST ; NO, BRANCH

There are shortcuts if VALUE is 0, 1, or FF16.

3. Branch to DEST if the accumulator contains 0.

AND A
....R Z,DEST

;ESTABLISH ZERO FLAG
;BRANCH IF A CONTAINS ZERO

4. Branch to DEST if the accumulator does not contain FF16.

INC A
....R NZ,DEST

;ESTABLISH ZERO FLAG
;BRANCH IF A WAS NOT FF

This procedure can be applied to any 8-bit register or to a memory location addressed
through HL or via indexing.

5. Branch to DEST if the accumulator contains 1.

DEC A
....R Z,DEST

;ESTABLISH ZERO FLAG
;BRANCH IF A WAS 1

CHAPTER 1 GENERAL PROGRAMMING METHODS 27

6. Branch to DEST if memory location ADDR contains 0.

LD HL,ADDR
INC (HL) ;ESTABLISH ZERO FLAG IN TWO STEPS
DEC (HL)
JR Z,DEST ;BRANCH IF ADDR CONTAINS ZERO

This procedure will also work on data at an indexed address or in registers B, C, D, E,
H, or L.

7. Branch to DEST if register pair HL contains VALI6.

AND A ;CLEAR CARRY, DON'T CHANGE A
LD rp,VAL16
SBC HL,rp ;DOES HL CONTAIN VAL16?
.JR Z, DEST ; YES, BRANCH

The 16-bit subtraction instruction always includes the Carry and is available only for
HL and another register pair (BC, DE, or SP).

Branching Based on Magnitude Comparisons

Determine if the value in the accumulator is greater than or less than some other
value by subtraction. If, as is typical, the values are unsigned, the Carry flag indicates
which is larger. In general,

· Carry = I if the value subtracted is larger than the value in the accumulator (that
is, if a borrow is required).

· Carry = °if the value in the accumulator is larger or if the two values are equal.

Since subtracting equal values makes the Carry 0, the alternatives (considering the
accumulator as the primary operand) are

· Primary operand less than secondary operand (Carry set)

· Primary operand greater than or equal to secondary operand (Carry cleared).

If the alternatives you need are "less than or equal to" and "greater than," you can
simply exchange the primary and secondary operands (that is, from Y X instead of
X- Y).

Examples

I. Branch to DEST if the contents of the accumulator are greater than or equal to
the number VALUE.

CP
JR

VALUE
NC,DEST

;IS A ABOVE VALUE?
;YES, BRANCH

28 Z80 ASSEMBLY LANGUAGE SUBROUTINES

2. Branch to DEST if the contents of memory address OPER I are less than the
contents of memory address OPER2.

LD
LD
CP
..JR

A, (OPERU
HL,OPER2
(HL)
C,DEST

~GET FIRST OPERAND

~IS IT LESS THAN SECOND OPERAND?
~YES, BRANCH

3. Branch to DEST if the contents of memory address OPERI are less than or equal
to the contents of memory address OPER2.

LD A, (OPER2) ~GET SECOND OPERAND
LD HL,OPERl
CP (HL) ~IS IT GREATER THAN OR EQUAL TO FIRST?
..JR NC,DEST ~YES, BRANCH

If we loaded the accumulator with OPER I and compared to OPER2, we could
branch only on the conditions

· OPERI greater than or equal to OPER2 (Carry cleared)

· OPER I less than OPER2 (Carry set).

Since neither is what we want, we must reverse the order in which the operands are
handled.

4. Branch to DEST if the contents of register pair HL are greater than or equal to
VALI6.

AND A ~CLEAR CARRY
LD rp,VAL16 ;IS HL ABOVE VAL16?
SBC HL, tOP
..JR NC,DEST ~YES, BRANCH

If the values are signed, we must allow for the possible occurrence of two's comple
ment overflow.7 This is the situation in which the difference between the numbers
cannot be contained in seven bits and, therefore, the sign bit is changed. For example,
if one number is +7 and the other is -125, the difference is -132, which is beyond the
capacity of eight bits (it is less than -128, the most negative number that eight bits can
hold).

If overflow is a possibility, we can determine if it occurred by examining the
Parity/ Overflow flag after the addition or subtraction instruction. If that flag is I,
overflow did occur. The mnemonics here are confusing, since the Parity/ Overflow flag
normally indicates whether the result has even parity; the branches are therefore PE
(Parity Even or Overflow Set) and PO (Parity Odd or Overflow Clear). Weller clarifies
the situation by defining additional mnemonics JV and JNY. 8

Thus, in the case of signed numbers, we must allow for the following possibilities:

· The result has the sign (positive or negative, as shown by the Sign flag) that we
want, and the Parity/Overflow flag indicates that the sign is valid.

CHAPTER 1 PI<OGRAMMING METHODS 29

. The result does not have the sign that we want, but the Parity/Overflow flag
indicates that two's complement overflow has changed the real sign.

We have to look for both a true positive (the sign we want, unaffected by overflow)
or a false negative (the opposite of the sign we want, but inverted by two's complement
overflow).

Examples

;YES, BRANCH IF RESULT NEGATIVE

;PERFORM THE COMPARISON
;DID OVERFLOW OCCUR?
;NO, BRANCH IF RESULT POSITIVE

FNEG:
DONE:

1. Branch to DEST if the accumulator contains a signed number greater than or
equal to the number VALUE.

CP VALUE
..JP PE, FNEG
..JP P, DEST
,..lR DONE
....P M,DEST
NOP

There are no relative jumps based on the Parity/Overflow flag.

;YES, BRANCH IF RESULT POSITIVE

;PERFORM THE COMPARISON
;DID OVERFLOW OCCUR?
;NO, BRANCH IF RESULT NEGATIVE

FPOS:
DONE:

2. Branch to DEST if the accumulator contains a signed number less than the
contents of memory address ADDR.

LD HL,ADDR
CP (HL)
,JP PE, FPOS
..JP M, DEST
.JR DONE
,.JP P, DEST
NOP

Remember, lP PE means "jump on overflow," while lP PO means "jump on no
overflow."

The programmer should also note that this is one of the few cases in which the Z80 is
not fully upward-compatible with the 8080 microprocessor. 9 The 8080 has no overflow
indicator and the P flag always indicates even parity.

There are some cases in which overflow cannot occur and all we must do is use the
Sign flag instead of the Carry flag for branching. These cases are the following:

. The two numbers have the same sign. When this occurs, the difference is smaller in
magnitude than the larger of the two numbers and overflow cannot occur. You can
easily determine if two numbers have the same sign by EXCLUSIVE ORing them
together and checking the Sign flag. Remember, the EXCLUSIVE OR oftwo bits is 1if
and only if the two bits have different values.

XOR VALUE
dP P,NOOVF

;COULD OVERFLOW OCCUR?
;NOT IF SIGNS ARE THE SAME

30 Z80 ASSEMBLY LANGUAGE SUBROUTINES

. A value is being compared with zero. In this case, the Sign flag must be set and
examined.

Examples

1. Jump to DEST if the accumulator contains a signed positive number.

AND A ;SET FLAGS FROM VALUE IN A
...JP P, DEST

2. Jump to DEST if an 8-bit register contains a signed negative number.

INC n?g
DEC reg
..JP M, DEST

;SET FLAGS FROM VALUE IN REGISTER

This sequence does not affect the accumulator or the register.

3. Jump to DEST if memory location ADDR contains a signed positive number.

LD HL,ADDR
INC (HL)
DEC (HL)
,JP P,DEST

;POINT TO DATA IN MEMORY

;BRANCH IF DATA IS POSITIVE

This sequence does not affect the accumulator or the memory location.

Tables 1-7 and 1-8 summarize the common instruction sequences for making
decisions with the Z80 microprocessor. Table 1-7 lists the sequences that depend only
on the value in the accumulator; Table 1-8 lists the sequences that depend on numerical
comparisons between the value in the accumulator and a specific number, the contents
of a register, or the contents of a memory location (addressed through HL or an index
register). Table 1-9 contains the sequences that depend only on the contents of a
memory location.

LOOPING

The simplest way to implement a loop (that is, to repeat a sequence of instructions)
with the Z80 microprocessor is to perform the following steps:

1. Load register B with the number of times the sequence is to be repeated.

2. Execute the sequence.

3. Use the DJNZ instruction to decrement register B and return to Step 2 if the
result is not o.

The DJNZ instruction is useful for loop control since it combines a decrement and a
conditional relative branch. Note that DJNZ always operates on register Band

CHAPTER 1 GENERAL PROGRAMMING METHODS 31

Table 1-7. Decision Sequences Depending on the Accumulator Alone

Condition Flag Setting Instruction Conditional Jump

Any bit = 0 BIT n,A lR Z or lP Z

Any bit = I BIT n,A lR NZ or lP NZ

Bit 7 = 0 RLA, RLCA, or ADD A,A lR NC or lP NC

Bit 7 I RLA, RLCA, or ADD A,A lR C or lP C

Bit 6 = 0 ADDA,A lP P

Bit 6= I ADD A,A lP M
Bit 0 = 0 RRA or RRCA lR NC or lP NC
BitO= I RRA or RRCA lR C or lP C
Equals zero AND A or OR A lR Z or lP Z

Not equal to zero AND A or OR A lR NZ or lP NZ

Positive (MSB = 0) AND A or OR A lP P

Negative (MSB = 1) AND A or OR A lP M

Table 1-8. Decision Sequences Depending on Numerical Comparisons
with the Accumulator (Using CP)

Condition Conditional Jump

Equal lR Z or lP Z

Not equal lR NZ or lP NZ

Greater than or equal (unsigned) lR NC or lP NC

Less than (unsigned) lR C or lP C

Greater than or equal (signed) lP P (assuming no overflow)

Less than (signed) lP M (assuming no overflow)

Note: All conditions assume that the accumulator contains the primary operand; for example,
less than means "accumulator less than other operand."

Table 1-9. Decision Sequences Depending on a
Memory Location Alone

Condition Flag Setting Instruction(s) Conditional Jump

Any bit = 0 BIT n, (HL) or (xy+OFFSET) lR Z or lP Z
Any bit = I BIT n,(HL) or (xy+OFFSET) lR NZ or lP NZ
=0 INC,DEC lR Z or lP Z

=f0 INC,DEC lR NZ or lP NZ

32 Z80 ASSEMBLY LANGUAGE SUBROUTINES

branches if B is not decremented to 0 - the instruction set does not provide any other
combinations. However, DJNZ has limitations: It allows only an 8-bit counter and an
8-bit offset for the relative branch (the branch is thus limited to 129 bytes forward or
126 backward from the first byte of the instruction).

Typical programs look like the following:

LD B,NTIMES ;NTIMES = NUMBER OF REPETITIONS
LOOP:

Instructions to be rep~ated

D.JNZ LOOP

We could, of course, use other 8-bit registers or count up rather than counting down.
These alternative approaches would require a slightly different initialization, an
explicit DEC or INC instruction, and a conditional JR or JP instruction. In any case,
the instructions to be repeated must not interfere with the counting of the repetitions.
Note that register B is special, and most programmers reserve it as a loop counter.

The 8-bit length of register B limits this simple loop to 256 repetitions. The
programmer can provide larger numbers of repetitions by nesting single-register loops
or by using a register pair as illustrated in the following examples:

. Nested loops

LOOPO:
LOOPI:

LD
LD

C,NTIMM
B,NTIML

;START OUTER COUNTER
;START INNER COUNTER

Instructions to be repeated

D..JNZ LOOPI
DEC C
..JR NZ, LOOPO

;DECREMENT INNER COUNTER
;DECREMENT OUTER COUNTER

The outer loop restores the inner counter (register B) to its starting value (NTIML)
after each decrement of the outer counter (register C). The nesting produces a
multiplicative factor-the instructions starting at LOOPI are repeated NTIMM X
NTIML times. We use register B as the inner counter to take maximum advantage of
DJNZ. (Clearly, the inner loop is executed many more times than the outer loop.)

. A register pair as 16-bit counter

LD BC,NTIMES ;INITIALIZE 16-BIT COUNTER
LOOP:

Instructions to be repeated

DEC BC
LD A,B
OR C
....R NZ,LOOP

;TEST 16-BIT COUNTER FOR ZERO

CHAPTER 1 GENERAL PROGRAMMING METHODS 33

The extra steps are necessary because DEC rp (or DEC xy) does not affect the Zero
flag (so there is no way of telling if the count has reached 0). The simplest way to
determine if a 16-bit register pair contains 0 is to logically OR the two registers. The
result of the logical OR is 0 if and only if all bits in both registers are O's. Check this
procedure by hand if you are not sure why it works. A major drawback to this
approach is its use of the accumulator, which requires saving the previous contents if
they are needed in the next iteration.

ARRAY MANIPUlATION

The simplest way to access a particular element of an array is to place the element's
address in register pair HL. In this way, it is possible to

· Manipulate the element by referring to it indirectly, that is, as (HL).

· Access the succeeding element (at the next higher address) by using INC to incre
ment register pair HL or access the preceding element (at the next lower address) by
using DEC to decrement HL.

· Access an arbitrary element by loading another register pair with the element's
offset from the address in HL and using the ADD HL instruction. If the offset is fixed,
we can also use indexing from a base address in either index register.

Typical array manipulation procedures are easy to program if the array is one
dimensional and the elements each occupy one byte. Some examples are

· Add an element of an array to the accumulator. Assume that the address of the
element is in register pair HL. Update HL so that it contains the address of the
succeeding 8-bit element.

ADD (HL) ;ADD CURRENT ELEMENT
INC HL ;ADDRESS NEXT ELEMENT

;YES, ADD 1 TO COUNT OF ZEROS
;ADDRESS PRECEDING ELEMENTUPDDT:

· Check to see if an element of an array is 0 and add 1 to register C if it is. Assume
that the element's address is in register pair HL. Update HL so that it contains the
address of the preceding 8-bit element.

LD A,(HL) ;GET CURRENT ELEMENT
AND A ;IS IT ZERO?
·.JR NZ, UPDDT
INC C
DEC HL

· Load the accumulator with the 35th element of an array. Assume that the base
address of the array is in register pair HL.

LD DE,35 GET OFFSET FOR 'REQUIRED ELEMENT
ADD HL,DE CALCULATE ADDRESS OF ELEMENT
LD A, (HL) OBTAIN THE ELEMENT

34 Z80 ASSEMBLY LANGUAGE SUBROUTINES

ADD HL,DE performs a 16-bit addition, using register pair HL as a 16-bit accumu
lator. Note that the 16-bit offset in register pair DE can be either positive or negative.

The following single instruction performs the same task if the offset is an 8-bit
unsigned number and the base address is in an index register:

LD A,(xy+35) ;OBTAIN THE ELEMENT IN ONE STEP

Manipulating array elements becomes more difficult if more than one element is
needed during each iteration (as in a sort that requires interchanging of elements), if
the elements are more than one byte long, or if the elements are themselves addresses
(as in a table of starting addresses). The basic problems are the lack of indexing with a
variable offset and the lack of instructions that access 16-bit items indirectly. Some
examples of more general array manipulation are

. Load register pair DE with a 16-bit element of an array (stored LSB first). The
starting address of the element is in register pair HL. Update HL so that it points to the
next 16-bit element.

LD E, (HL)
INC HL
LD D,(HL)
INC HL

;GET LSB OF ELEMENT

;GET MSB OF ELEMENT
;ADDRESS NEXT ELEMENT

. Exchange an element of an array with its successor if the two are not already in
descending order. Assume that the elements are 8-bit unsigned numbers and that the
address of the current element is in register pair HL. Update HL so that it contains the
address of the successor element.

DONE:

LD
INC
CP
,.JR
LD
LD
DEC
LD
INC
NOP

A, (HL)
(HL)
(HL)
NC,DONE
B, (HL)
(HL),A
HL
(HL), B
HL

;GET CURRENT ELEMENT

;IS IT LESS THAN SUCCESSOR?
;NO, NO INTERCHANGE NECESSARY
;YES, START THE INTERCHANGE
;CURRENT ELEMENT TO NEW POSITION

;SUCCESSOR ELEMENT TO NEW POSITION

This procedure is awkward because the processor can address only one element at a
time using HL. Clearly, the problem would be even more serious if the two elements
were more than one position apart.

An alternative approach is to use an index register; that is,

DONE:

LD A, (Xy+O)
CP (Xy+l)
.JR NC, DONE
LD B,(xy+O)
LD (xy+l),A
LD (xy+O),B
INC xy

;GET CURRENT ELEMENT
;IS IT LESS THAN SUCCESSOR?
;NO, NO INTERCHANGE NECESSARY
;YES, START THE INTERCHANGE
;CURRENT ELEMENT TO NEW POSITION
;SUCCESSOR ELEMENT TO NEW POSITION
;MOVE ON TO NEXT PAIR

CHAPTEr,: 1 GENERAL PROGRAMMING METHODS 35

. Load the accumulator from the 12th indirect address in a table. Assume that the
base address of the table is in register pair HL.

LD DE,24
ADD HL,DE
LD E,(HL)
INC HL
LD D,(HL)
LD A, (DE)

;GET DOUBLED OFFSET FOR ELEMENT
;CALCULATE STARTING ADDRESS OF ELEMENT
;GET LSB OF INDIRECT ADDRESS

;GET MSB OF INDIRECT ADDRESS
;OBTAIN DATA FROM INDIRECT ADDRESS

An alternative approach using an index register is

LD A, (xy+24) ;GET LSB OF INDIRECT ADDRESS
LD E,A
LD A, (xy+25) ;GET MSB OF INDIRECT ADDRESS
LD D,A
LD A, (DE) ;OBTAIN DATA FROM INDIRECT ADDRESS

Note that in either approach you must double the index to handle tables containing
addresses, since each 16-bit address occupies two bytes of memory.

Some ways to simplify array processing are

· Keep the base address of the table or array in register pair DE (or Be), so ADD HL
or ADD xy does not destroy it.

· Use ADD A,A to double an index in the accumulator. The doubled index can then
be used to handle arrays or tables consisting of 16-bit elements. ADD HL,HL or ADD
xY,xy may be used to double 16-bit indexes.

· Use EX DE,HL to move addresses to and from register pair HL.

Chapters 5 and 9 contain further examples of array manipulation.

Block Move and Block Compare Instructions

Another way to simplify array processing is to use the Z80's block move and block
compare instructions. The block move instructions not only transfer data from one
memory location to another without using the accumulator, but they also update the
array pointers and decrement a 16-bit loop counter. Thus, a block move instruction
can replace a sequence of load, increment, and decrement instructions. Repeated
block move instructions continue transferring data, updating the pointers, and decre
menting the counter until the counter is decremented to zero. Block compare instruc
tions are similar to block moves, except that only a single pointer is involved (the other
operand is in the accumulator), and the repeated versions also terminate if the
operands being compared are equal (this is referred to as a true comparison).

A further convenience of block moves and block compares is that they solve the
problem of testing a 16-bit counter for O. Both block moves and block compares clear

36 Z80 ASSEMBLY LANGUAGE SUBROUTINES

the ParityIOverflow flag if the 16-bit counter (always in register pair BC) is decre
mented to zero, and set the ParityIOverflow flag otherwise. Note that the indicator is
the ParityIOverflow flag, not the Zero flag.

The block move and compare instructions are the following:

· LDI (LDD) moves a byte of data from the address in HL to the address in DE,
decrements BC, and increments (decrements) DE and HI"

· LDIR (LDDR) repeats LDI (LDD) until BC is decremented to O.

· CPI (CPD) compares the accumulator to the data at the address in HL, decre
ments BC, and increments (decrements) HI" Both CPI and CPD set the Zero flag if
the operands being compared are equal, and clear the Zero flag otherwise.

· CPIR (CPDR) repeats CPI (CPD) until BC is decremented to O.

Note that block moves reserve BC, DE, and HL for special purposes, while block
compares reserve only BC and HI"

Examples

1. Move a byte of data from memory location ADDR 1 to memory location
ADDR2.

LD BC,l
LD DE,ADDRl
LD HL,ADDR2
LDI clr LDD .

;NUMBER OF BYTES TO MOVE = 1
;INITIALIZE SOURCE POINTER
;INITIALIZE DESTINATION POINTER
;MOVE A BYTE OF DATA

Obviously, the overhead of loading all the register pairs makes it uneconomical to use
LDI or LDD to move a single byte of data.

2. Move two bytes of data from memory locations ADDR1 and ADDR1+ 1 to
memory locations ADDR2 and ADDR2+ 1.

or

LD
LD
LD
LDIR

BC,2
DE,ADDRl
HL,ADDR2

;NUMBER OF BYTES TO MOVE = 2
; INITIALIZE SOURCE POINTER
;INITIALIZE DESTINATION POINTER
;MOVE TWO BYTES OF DATA

LD BC,2 ;NUMBER OF BYTES TO MOVE = 2
LD DE,ADDR1+l ;INITIALIZE SOURCE POINTER
LD HL,ADDR2+1 ;INITIALIZE DESTINATION POINTER
LDDR ;MOVE TWO BYTES OF DATA

The block move instructions become more useful as the number of bytes to be moved
increases.

CHAPTER 1 GENERAL PROGr~AMMING METHODS 37

3. Move ten bytes of data from memory locations starting at ADDRI to memory
locations starting at ADDR2.

or

LD
LD
LD
LDIR

BC,10
DE,ADDRl
HL,ADDR2

;NUMBER OF BYTES TO MOVE = 10
;INITIALIZE SOURCE POINTER
;INITIALIZE DESTINATION POINTER
;MOVE TEN BYTES OF DATA

LD BC,10 ;NUMBER OF BYTES TO MOVE = 10
LD DE,ADDR1+9 ;INITIALIZE SOURCE POINTER
LD HL,ADDR2+9 ;INITIALIZE DESTINATION POINTER
LDDR ;MOVE TEN BYTES OF DATA

4. Examine memory locations starting at ADDR until one is encountered that
contains 0 or until 256 bytes have been examined.

LD
LD
SUB
CPIR

BC,100H
HL,ADDR
A

;MAXIMUM LENGTH = 100 HEX = 256
;POINT TO START OF SEARCH AREA
;GET ZERO FOR COMPARISON

The final value of the Zero flag indicates why the program exited.

Zero flag = 1 if the program found a 0 in memory.

Zero flag = 0 if the program decremented BC to O.

The block move and block compare instructions are convenient, but their forms are
restricted and their applications are limited. The programmer must remember the
following:

· BC always serves as the counter; it is decremented after each iteration. The
ParityIOverflow flag (not the Zero flag) indicates whether BC has been decremented
to O. Be careful- the P I V flag is set to 0 if BC has been decremented to 0; the polarity
is opposite of that used with the Zero flag. Thus, after a block move or block compare,
the relevant conditional branches have the following meanings:

lP PE means "branch if BC has not been decremented to 0."

lP PO means "branch if BC has been decremented to 0."

· HL always serves as the source pointer in block moves and as the memory pointer
in block compares. HL is incremented or decremented after the data is transferred or a
comparison is performed.

· DE always serves as the destination pointer in block moves; it is not used in block
compares. Like HL, DE is incremented or decremented after the data is transferred.
Note also that LDI and LDIR increment both HL and DE, while LDD and LDDR
decrement both pairs.

38 Z80 ASSEMBLY LANGUAGE SUBROUTINES

. Repeated block comparisons exit if either a true comparison occurs or Be is
decremented to O. Testing the Zero flag will determine which condition caused the exit.

TABLE LOOKUP

Although the Z80 processor has indexing, the calculations required for table lookup
must be performed explicitly using the ADD HL or ADD xy instruction. This is
because the Z80's indexing assumes a variable 16-bit address in an index register and a
fixed 8-bit offset. As with array manipulation, table lookup is simple if the table
consists of 8-bit data items; it is more complicated if the table contains longer items or
addresses. The instructions EX DE,HL and lP (HL) or lP (xy) can be useful, but
require the programmer to place the results in specific 16-bit registers.

Examples

1. Load the accumulator with an element from a table. Assume that the base
address of the table is BASE (a constant) and the 16-bit index is in memory locations
INDEX and INDEX+ 1 (MSB in INDEX+ 1).

LD DE, BASE
LD HL, <INDEX)
ADD HL,DE
LD A, (HL)

;GET BASE ADDRESS
;GET INDEX
;CALCULATE ADDRESS OF ELEMENT
;OBTAIN THE ELEMENT

Reversing the roles of DE and HL would slow down the program since LD
DE,(ADDR) executes more slowly and occupies more memory than does LD
HL,(ADDR). This asymmetry is caused by the fact that only LD HL,(ADDR) is an
original 8080 instruction; the direct loads of other register pairs (including the stack
pointer) are additions to the underlying 8080 instruction set.

2. Load the accumulator with an element from a table. Assume that the base
address of the table is BASE (a constant) and the index is in the accumulator.

LD L,A
LD H,O
LD DE, BASE
ADD HL,DE
LD A, (HL)

;EXTEND INDEX TO 16 BITS IN HL

;GET BASE ADDRESS
;CALCULATE ADDRESS OF ELEMENT
;OBTAIN THE ELEMENT

3. Load register pair DE with a 16-bit element from a table. Assume that the base
address of the table is BASE (a constant) and the index is in the accumulator.

ADD A,A
LD L,A
LD H,O

;DOUBLE INDEX FOR 16-BIT ELEMENTS
;EXTEND INDEX TO 16 BITS

LD BC,BASE
ADD HL,BC
LD E, (HL)
INC HL
LD D,(HL)

CHAPTER 1 GENERAL PROGRAMMING METHODS 39

;GET BASE ADDRESS
;CALCULATE STARTING ADDRESS
;GET LSB OF ELEMENT

;GET MSB OF ELEMENT

;JUMP TO DESTINATION

JGET MSB OF DESTINATION

;GET BASE ADDRESS
jCALCULATE STARTING ADDRESS
JGET LSB OF DESTINATION

You can also use the instruction ADD HL,HL to double the index; it is slower than
ADD A,A but it automatically handles cases in which the doubled index is too large
for 8 bits.

4. Transfer control (jump) to a 16-bit address obtained from a table. Assume that
the base address of the table is BASE (a constant) and the index is in the accumulator.

ADD A,A ;DOUBLE INDEX FOR 16-BIT ELEMENTS
LD L,A ;EXTEND INDEX TO 16 BITS
LD H,O
LD BC,BASE
ADD HL,BC
LD E,(HL)
INC HL
LD D, (HL)
EX DE,HL
....IP (HL)

The common uses of jump tables are to implement CASE statements (multi-way
branches used in languages such as FORTRAN, Pascal, and PLj 1), to decode com
mands from a keyboard, and to respond to function keys on a terminal.

CHARACTER MANIPULATION

The easiest way to manipulate characters on the Z80 processor is to treat them as
unsigned 8-bit numbers. The letters and digits form ordered subsequences of the
ASCII character set (for example, the ASCII version of the letter A is one less than the
ASCII version of B). Appendix C contains a complete ASCII character set.

Examples

1. Branch to address DEST if the accumulator contains ASCII E.

CP
JR

"E'-
Z,DEST

;IS DATA ASCII E?
jYES, BRANCH

2. Search a string starting at address STRNG until a non-blank character is found.

EXAMC:
LD
LD
CP
....IR

HL,STRNG ;POINT TO START OF STRING
A, (HL) JGET NEXT CHARACTER

JIS IT A BLANK?
NZ,DONE jNO, DONE

40 zao ASSEMBLY LANGUAGE SUBROUTINES

or

DONE:

INC HL
,..IP EXAMC
NOP

;YES, PROCEED TO NEXT CHARACTER

EXAMC:
LD HL,STRNG-l ;POINT TO BYTE BEFORE STRING
INC HL
LD A, (HL) ;GET NEXT CHARACTER
CP ;IS IT A BLANK?
JR Z,EXAMC ;YES, KEEP LOOKING

We could make either version execute faster by placing the blank character in a
general-purpose register (for example, register C) and comparing each character with
that register (using CP C) rather than with an immediate data value.

We could also use the block compare instructions which combine the comparison
and the incrementing of the pointer in HL. The CPI instruction, for example, not only
compares the accumulator with the data at the address in HL, but also increments HL
and decrements BC. Thus, the program using CPI is

LD HL,STRNG ;POINT TO START OF STRING
LD A," ;GET A BLANK FOR COMPARISON

EXAMC: CPI ;IS NEXT CHARACTER A BLANK?
JR Z,EXAMC ;YES, KEEP LOOKING

The CPI instruction sets the Zero flag to I if the operands being compared are equal
and to 0 if they are not equal. It also sets the Parity/ Overflow flag to 0 if it decrements
BC to 0 and to I if it does not, thus allowing the programmer to check easily for the
termination of the string as well as for a true comparison. We cannot use CPIR here,
since it would terminate as soon as a blank character (rather than a non-blank
character) was found.

3. Branch to address DEST if the accumulator contains a letter between C and F;
inclusive.

DONE:

CP -'C·'
...JR C, DONE
CP -'G"
...JR C, DEST
NOP

;IS DATA BELOW C?
;YES, DONE
;IS DATA BELOW G?
;YES, MUST BE BETWEEN C AND F

We have taken advantage of the fact that G follows F numerically in ASCII, just
as it does in the alphabet. Chapter 8 contains further examples of string manipulation.

CODE CONVERSION

You can convert data from one code to another using arithmetic or logical opera
tions (if the relationship is simple) or lookup tables (if the relationship is complex).

CHAPTER 1 GENEI<AL PI<OGRAMMING METHODS 41

Examples

1. Convert an ASCII digit to its binary-coded decimal (BCD) equivalent.

SUB "'0" ;CONVERT ASCII TO BCD

Since the ASCII digits form an ordered subsequence of the code, all that must be done
is subtract the offset (ASCII 0).

You can also clear bits 4 and 5 with the instruction

AND 11001111B ;CONVERT ASCII TO BCD

Either the arithmetic instruction or the logical instruction will convert ASCII 0 (3016)
to decimal 0 (0016).

2. Convert a binary-coded-decimal (BCD) digit to its ASCII equivalent.

ADD A, "0"· ;CONVERT BCD TO ASCII

The inverse conversion is equally simple. Bits 4 and 5 can be set with the instruction

OR 00110000B ;CONVERT BCD TO ASCII

Either the arithmetic instruction or the logical instruction will convert decimal 6 (0616)

to ASCII 6 (3616).

3. Convert one 8-bit code to another using a lookup table. Assume that the lookup
table starts at address NEWCD and is indexed by the value in the original code (for
example, the 27th entry is the value in the new code corresponding to 27 in the original
code). Assume that the data is in memory location CODE.

LD A, (CODE)
LD L,A
LD H,O
LD DE,NEWCD
ADD HL,DE
LD A, (HL)

;GET THE OLD CODE
;EXTEND INDEX TO 16 BITS

;GET BASE ADDRESS
;CALCULATE ADDRESS OF ELEMENT
;GET THE ELEMENT

Indexed addressing cannot be used here, since memory location CODE contains a
variable value.

Chapter 4 contains further examples of code conversion.

MULTIPLE·PRECISION ARITHMETIC

Multiple-precision arithmetic requires a series of 8-bit operations. They are

. Clear the Carry flag initially, since there is never a carry into or borrow from the
least significant byte.

42 ZSO ASSEMBLY LANGUAGE SUBROUTINES

. Use the Add with Carry (ADC) or Subtract with Carry (SBC) instruction to
perform an 8-bit operation and include the carry or borrow from the previous
operation.

;GET A BYTE OF ONE OPERAND
;ADD A BYTE OF THE OTHER OPERAND
;STORE THE S-BIT SUM
;UPDATE POINTERS

;COUNT BYTE OPERATIONS

ADD8:

A typical 64-bit addition program is

LD B,8 ;NUMBER OF BYTES = 8
SUB A ;CLEAR CARRY INITIALLY
LD HL,NUM1 ;POINT TO START OF NUMBERS
LD DE, NUM2
LD A, (DE)
ADC A,(HL)
LD (HL),A
INC DE
INC HL
D.JNZ ADDS

Chapter 6 contains further examples.

MULTIPLICATION AND DIVISION
There are many ways to implement multiplication. One approach is to convert

multiplication by a small integer into a specific short sequence of additions and left
shifts.

Examples

1. Multiply the contents of the accumulator by 2.

ADD A,A ;DOUBLE A

;A TIMES 2
;A TIMES 4
;A TIMES 5

2. Ivlultiply the contents of the accumulator by 5.

LD B,A
ADD A,A
ADD A,A
ADD A,B

Both examples assume that no carries ever occur. ADD HL could be similarly used
to produce a l6-bit result.

This approach is often handy in accessing elements of two-dimensional arrays. For
example, assume a set of temperature readings taken at four different positions in each
of three different storage tanks. Organize the readings as a two-dimensional array
T(I,J), where I is the tank number (1,2, or 3) and J identifies the position in the tank (1,
2,3, or 4). Store the reading in the computer's memory one after another as follows,
starting with the reading at position 1 of tank 1:

BASE
BASE+1
BASE+2

TO,!)
TO,2)
TO,3)

Reading at tank I, position
Reading at tank 1, position 2
Reading at tank 1, position 3

CHAPTER 1 GENERAL PROGRAMMING METHODS 43

BASE+3 T(1,4) Reading at tank 1, p,:,s i t ion 4
BASE+4 T(2,1) Reading at tank ~, PCtS i t ion 1"'-,
BASE+5 T(2,2) Reading at tank 2, position 2
BASE+6 T(2,3) Reading at tank ,.., pc.s i t ion 3"'-,
BASE+7 T(2,4) Reading at tank 2, p,:tS i t ion 4
BASE+8 T(3,1) Reading at tank 3, positiQn 1
BASE+9 T(3,2) Reading at tank 3, p,:,s i t ion 2
BASE+I0 T(3,3) Reading at tank 3, PCtS i t ion 3
BASE+ll T(3,4) Reading at tank 3, pt:'sition 4

Generally, the reading T(I,J) is located at address BASE +4 *(1-1) +(1-1). 1f I is in
the accumulator and J is in register B, the accumulator can be loaded with T(I,J) as
follows:

DEC A
ADD A,A
ADD A,A
ADD A,B
DEC A
LD L,A
LD H,O
LD DE, BASE
ADD HL,DE
LD A, (HL)

;OFFSET FOR TANK I
;2 * (I-I)
;4 * (I-1)
;ADD OFFSET FOR POSITION ...I
;4 * (1-1) + (...1-1)
;EXTEND INDEX TO 16 BITS

;GET BASE ADDRESS OF READINGS
;ACCESS DESIRED READING
;FETCH T(I,.J)

Extending this approach to handle arrays with more dimensions is shown in
Chapter 5.

Division by a power of 2 can be implemented as a series of right logical shifts.

Example

Divide the contents of the accumulator by 4.

01

SRL A
SRL A

;DIVIDE A BY 2
;AND THEN BY 2 AGAIN

RRA ;DIVIDE A BY 4 BY ROTATING IT TWICE
RRA
AND 00111111B ;MAKE SHIFTS LOGICAL BY CLEARING MSB~S

The second alternative uses the one-byte instruction,RRA, rather than the two-byte
instruction SRL A. When multiplying or dividing signed numbers, be careful to
separate the signs from the magnitudes. Replace logical shifts with arithmetic shifts
that preserve the value of the sign bit.

Other approaches to multiplication and division include algorithms involving shifts
and ~additions (multiplication) or shifts and subtractions (division) as described in
Chapter 6, and lookup tables as discussed previously in this chapter.

44 Z80 ASSEMBLY LANGUAGE SUBROUTINES

LIST PROCESSING
Additional information on the following material can be found in an article by K.S.

Shankar published in IEEE Computer. 10

Lists can be processed like arrays if the elements are stored in consecutive addresses.
If the elements are queued or chained, however, the limitations of the instruction set
are evident because

· Indexed addressing allows only an 8-bit fixed offset.

· No indirect addressing is available, except through register pairs or index registers.

· Addresses in register pairs or index registers can be used only to retrieve or store
8-bit data.

Examples

1. Retrieve an address stored starting at the address in register pair HL. Place the
retrieved address in HL.

LD E, (HL)
INC HL
LD D,(HL)
EX DE,HL

;GET LSB OF LINK

;GET MSB OF LINK
;REPLACE CURRENT POINTER WITH LINK

This procedure allows you to move from one element to another in a linked list.

2. Retrieve data from the address currently in memory locations INDIR and
INDIR+ 1 and increase that address by 1.

LD HL,(INDIR);GET POINTER FROM MEMORY
LD A,(HL) ;GET DATA USING POINTER
INC HL ;UPDATE POINTER BY 1
LD (INDIR),HL

This procedure allows the use of the address in memory as a pointer to the next
available location in a buffer.

3. Store an address from DE starting at the address currently in register pair HL.
Increment HL by 2.

LD (HL),E ;STORE LSB OF POINTER
INC HL
LD (HL),D ;STORE MSB OF POINTER
INC HL ;COMPLETE UPDATING OF HL

This procedure allows building a list of addresses. Such a list could be used, for
example, to write threaded code in which each routine concludes by transferring
control to its successor. The list could also contain the starting addresses of a series of
test procedures or tasks or the addresses of memory locations or II 0 devices assigned
by the operator to particular functions.

;MOVE MORE SIGNIFICANT BYTES

;REPLACE HEAD, SAVING OLD VALUE
;MOVE LESS SIGNIFICANT BYTES

;NEW HEAD POINTS TO OLD HEAD
; INCLUDING MORE SIGNIFICANT BYTES

CHAPTEI< 1 GENERAL PROGRAMMING METHODS 45

GENERAL DATA STRUCTURES

Additional information on the following material can be found in the book Data
Structures Using Pascal by A. Tenenbaum and M. Augenstein. 11 There are several
versions of this book by the same authors for different languages and computers.

More general data structures can be handled using the procedures for array manipu
lation, table lookup, and list processing that have been described earlier. The key
limitations in the instruction set are the same ones mentioned in the discussion of list
processing.

Examples

1. Queues or linked lists. Assume there is a queue header consisting of the base
address of the first element in memory locations HEAD and HEAD+ 1. If there are no
elements in the queue, HEAD and HEAD+ I both contain O. The first two locations in
each element contain the base address of the next element or 0 if there is no next
element.

. Add an element to the head of the queue. Assume that the element's base address is
in DE.

LD HL,HEAD
LD A, (HL)
LD (HL), E
INC HL
LD B, (HL)
LD (HL), D
LD (DE), A
LD A,B
INC DE
LD (DE), A

. Remove an element from the head of the queue and set the Zero flag if no element
is available. Place the base address of the element (or 0 if there is no element) in DE.

LD HL,HEAD ;OBTAIN HEAD OF GlUEUE
LD E,(HL) ;LESS SIGNIFICANT BYTE
INC HL
LD D, (HL) ;MORE SIGNIFICANT BYTE
LD A,D
OR E ;ANY ELEMENTS IN QUEUE?
.JR Z,DONE ;NO, DONE
INC DE ; YE~3, MAKE NEXT ELEMENT NEW HEAD
LD A, (DE)
LD (HL), A ; MORE SIGNIFICANT BYTE
DEC DE
DEC HL
LD (DE),A ;LESS SIGNIFICANT BYTE
LD (HL),A

DONE: NOP

46 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Since no instruction after OR E affects any flags, the final value of the Zero flag
indicates whether the queue was empty.

2. Stacks. Assume there is a stack structure consisting of 8-bit elements. The
address of the next empty location is in addresses SPTR and SPTR+ 1. The lowest
address that the stack can occupy is LOW and the highest address is HIGH. Note that
this software stack grows up in memory (toward higher addresses), whereas the Z80's
hardware stack grows down (toward lower addresses).

. If the stack overflows, set the Carry flag and exit. Otherwise, store the accumula
tor in the stack and increase the stack pointer by 1. Overflow means that the stack has
expanded beyond its assigned area.

DONE:

LD HL.(SPTR)
EX DE.HL
LD HL.-(HIGH+l)
ADD HL.DE
...JR C. DONE
EX DE.HL
LD (HL). A
INC HL
LD (SPTR). HL
NOP

;GET THE STACK POINTER

;CHECK FOR STACK OVERFLOW
;SET CARRY IF STACK OVERFLOWS
;AND EXIT ON OVERFLOW
;GET STACK POINTER BACK
;STORE ACCUMULATOR IN STACK
;UPDATE STACK POINTER

. If the stack underflows, set the Carry flag and exit. Otherwise, decrease the stack
pointer by 1 and load the accumulator from the stack. Underflow means that an
attempt has been made to remove data from an empty stack.

DONE:

LD HL.(SPTR)
EX DE.HL
LD HL.-(LOW+l)
ADD HL.DE
...JR NC. DONE
EX DE.HL
DEC HL
LD A. (HL)
LD (SPTR).HL
CCF

;GET THE STACK POINTER

;CHECK FOR STACK UNDERFLOW
;CLEAR CARRY IF STACK UNDERFLOWS
;AND EXIT ON UNDERFLOW
;GET STACK POINTER BACK
;UPDATE STACK POINTER
;LOAD ACCUMULATOR FROM STACK
;RESTORE STACK POINTER
;SET CARRY ON UNDERFLOW

Both example programs utilize the fact that ADD HL affects only the Carry flag.
Remember, ADD HL does not affect the Zero flag. Note also that DEC rp and INC rp
do not affect any flags.

PARAMETER PASSING TECHNIQUES
The most common ways to pass parameters on the Z80 microprocessor are

1. In registers. Seven 8-bit primary user registers (A, B, C, D, E, H, and L) are
available, and the three register pairs (BC, DE, and HL) and two index registers (IX

CHAPTER 1 GENERAL PROGRAMMING METHODS 47

and IY) may be used readily to pass addresses. This approach is adequate in simple
cases, but it lacks generality and can handle only a limited number of parameters. The
programmer must remember the normal uses of the registers in assigning parameters.
In other words,

· The accumulator is the obvious place to put a single 8-bit parameter.

· Register pair HL is the obvious place to put a single address-length (16-bit)
parameter.

· Register pair DE is a better place to put a second address-length parameter than
register pair Be, because of the EX DE,HL instruction.

· An index register (IX or IY) is the obvious place to put the base address of a data
structure when elements are available at fixed offsets.

This approach is reentrant as long as the interrupt service routines save and restore
all the registers.

2. In an assigned area of memory. There are two ways to implement this approach.
One is to place the base address of the assigned area in an index register. Then
particular parameters may be accessed with fixed offsets. The problem here is that the
Z80's indexing is extremely time-consuming. An alternative is to place the base
address in HL. Then parameters must be retrieved in consecutive order, one byte at a
time.

In either alternative, the calling routine must store the parameters in memory and
load the starting address into the index register or HL before transferring control to
the subroutine. This approach is general and can handle any number of parameters,
but it requires a lot of management. If different areas of memory are assigned for each
call or each routine, a unique stack is essentially created. Ifa common area of memory
is used, reentrancy is lost. In this method, the programmer is responsible for assigning
areas of memory, avoiding interference between routines, and saving and restoring the
pointers required to resume routines after subroutine calls or interrupts.

3. In program memory immediately following the subroutine call. If this approach
is used, remember the following:

. The base address of the memory area is at the top of the stack; that is, the base
address is the normal return address, the location of the instruction immediately
following the call. The base address can be moved to an index register by popping the
stack with

POP Xy ;RETRIEVE BASE ADDRESS OF PARAMETERS

Now access the parameters with fixed offsets from the index register. For example,
the accumulator can be loaded with the first parameter by using the instruction

LD A,(xy+O) ;MOVE FIRST PARAMETER TO A

48 Z80 ASSEMBLY LANGUAGE SUBROUTINES

. All parameters must be fixed for a given call, since the program memory is
typically read-only.

. The subroutine must calculate the actual return address (the address immediately
following the parameter area) and place it on top of the stack before executing a RET
instruction.

Example

Assume that subroutine SUBR requires an 8-bit parameter and a 16-bit parameter.
Show a main program that calls SU BR and contains the required parameters. Also
show the initial part of the subroutine that retrieves the parameters, storing the 8-bit
item in the accumulator and the 16-bit item in register pair HL, and places the correct
return address at the top of the stack.

Subroutine call

CALL SUBR ;EXECUTE SUBROUTINE
DEFB PARS ;S-BIT PARAMETER
DEFW PAR16 ;16-BIT PARAMETER

next instt-uct ion

Subroutine

SUBR: POP
LD
LD
LD
LD
LD
LD
ADD
PUSH

xy
A, (>:y+l)
E,A
A, (xy+2)
D,A
A, (Xy+O)
BC,3
>:y,BC
>:y

;POINT TO START OF PARAMETER AREA
;GET LSB OF 16-BIT PARAMETER

;GET MSB OF 16-BIT PARAMETER

;GET S-BIT PARAMETER
;UPDATE RETURN ADDRESS

••• remainder of subroutine •••

RET ;RETURN TO NEXT INSTRUCTION

The initial POP xy instruction loads the index register with the return address that
CALL SUBR saved at the top of the stack. In fact, the return address does not contain
an instruction; instead, it contains the first parameter (PAR8). The next instructions
move the parameters to their respective registers. Finally, adding 3 to the return
address and saving the sum in the stack makes the final RET instruction transfer
control back to the instruction following the parameters.

This approach allows parameter lists of any length. However, obtaining the parame
ters from memory and adjusting the return address is awkward at best; it becomes a
longer and slower process as the number of parameters increases.

CHAPTER 1 GENEI<AL PROGRAMMING METHODS 49

4. In the stack. When using this approach, remember the following:

. CALL stores the return address at the top of the stack. The parameters that the
calling routine placed in the stack begin at address ssss + 2, where ssss is the contents of
the stack pointer. The 16-bit return address occupies the top two locations of the stack,
and the stack pointer itself always refers to the lowest occupied address, not the highest
emptyone.

o The subroutine can determine the value of the stack pointer (the location of the
parameters) by (a) storing it in memory with LD (ADDR),SP or (b) using the sequence

LD HL,O
ADD HL,SP

;MOVE STACK POINTER TO HL

This sequence places the stack pointer in register pair HL (the opposite of LD SP,HL).
We can use an index register instead of HL if HL is reserved for other purposes.

. The calling program must place the parameters in the stack and assign space for
the results before calling the subroutine. It must also remove the parameters from the
stack (often referred to as cleaning the stack) afterward. Cleaning the stack is simple if
the programmer always places the parameters above the empty area assigned to the
results. Then the parameters can be removed, leaving the results at the top. The next
example illustrates how this is done. An obvious alternative is for the results to replace
some or all of the parameters.

. Stack locations can be allocated dynamically for results with the sequence

LD HL,-NRESLT
ADD HL,SP
LD SP,HL

;LEAVE ROOM FOR RESULTS

This sequence leaves NRESLT empty locations at the top of the stack as shown in
Figure 1-8. Of course, if NRESLT is small, simply executing DEC SP NRESLT times
will be faster and shorter. The same approaches can be used to provide stack locations
for temporary storage.

Example

Assume that subroutine SUBR requires an 8-bit parameter and a 16-bit parameter,
and that it produces two 8-bit results. Show a call of SUBR, the placing of the
parameters in the accumulator and register pair HL, and the cleaning of the stack after
the return. Figure 1-9 shows the appearance of the stack initially, after the subroutine
call, and at the end. Using the stack for parameters and results will generally keep the
parameters at the top of the stack in the proper order. In this case, there is no need to
save the parameters or assign space in the stack for the results (they will replace some
or all of the original parameters). However, space must be assigned on the stack for
temporary storage to maintain generality and reentrancy.

50 Z80 ASSEMBLY LANGUAGE SUBROUTINES

;RESULT IS NOW AT TOP OF STACK

;LEAVE ROOM ON STACK FOR RESULT
;A GENERAL WAY TO ADJUST SP

Calling program

LD
ADD
LD
LD
PUSH
LD
PUSH
INC
CALL
LD
ADD
LD

Subroutine

HL,-2
HL,SP
SP,HL
HL,(PAR16);OBTAIN 16-BIT PARAMETER
HL ;MOVE 16-BIT PARAMETER TO STACK
A, (PAR8) ;OBTAIN 8-BIT PARAMETER
AF ;MOVE 8-BIT PARAMETER TO STACK
SP ;REMOVE EXTRANEOUS BYTE
SUBR ;EXECUTE SUBROUTINE
HL,3 ;CLEAN PARAMETERS FROM STACK
HL,SP
SP,HL

SUBR: LD
ADD
LD
INC
LD
INC
LD
INC
EX

HL,2
HL,SP
Ar (HL)
HL
E r (HL)
HL
Dr (HL>
HL
DE,HL

;POINT TO START OF PARAMETER AREA

;GET 8-BIT PARAMETER

;GET 16-BIT PARAMETER

. remainder of subroutine

RET

The first three instructions of the calling program could be replaced with two DEC
SP instructions, and the last three instructions with three INC SP instructions. Note
that only 16-bit register pairs can be moved to or from the stack. Remember, AF
consists of the accumulator (MSB) and the flags (LSB).

ssss

+
Stack

Pointer

No values are placed in the locations.
The initial contents of the stack pointer are ssss.

E7:rt~t~~~;!
results in the------1

stack 1--------1

1--------1

ssss - NRESLT

Stack
Pointer

Figure 1m3. The stack before and after assigning NRESLT empty locations for results

CHAPTER 1 GENERAL PROGRAMMING METHODS 51

ssss-2

1
Stack

Pointer

Final State of
h S kt e tac

Result #1

Result #2

Stack
Pointer

ssss-7

0

LSB of return
address

MSB of return
address

8-bit
parameter

LSB of 16-bit
parameter

MSB of 16-bit
parameter

Empty byte
for result #1

Empty byte
for result #2

Stack After Execution
fCALL SUBR

ssss,
Stack

Pointer

Initial State of
the Stack

The initial contents of the stack pointer are ssss.

Figure 1·9. The effect of a subroutine on the stack

SIMPLIINPUT/OUTPUT

Simple inputl output can be performed using either 8-bit device (port) addresses or
full 16-bit memory addresses. The advantages of device addresses are that they are
short and provide a separate address space for II 0 ports. The disadvantages are that
only a few instructions (IN, OU-r, and block II 0 instructions) use device addresses. If,
on the other hand, I/O devices occupy memory addresses, any instruction that
references memory can also perform II O. The problems with this approach are that it
is non-standard, it makes it difficult for a reader to differentiate I/O transfers from
memory transfers, and it requires that some memory address space be reserved for II 0
devices.

Examples

1. Load the accumulator from input port 2.

IN A, (2) ;READ FROM PORT 2

or

LD
IN

C,2
A, (C)

;PUT PORT ADDRESS IN C
;READ FROM PORT 2

52 Z80 ASSEMBLY LANGUAGE SUBROUTINES

The second alternative is longer but more flexible. The IN reg,(C) instruction allows
the data to be obtained from any port and loaded into any register. On the other hand,
IN A,(port) is limited to loading the accumulator from a fixed port address. The Sign
and Zero flags can be set by IN reg,(C) for later testing, whereas IN A,(port) does not
affect the flags.

2. Load the accumulator from the input port addressed by the contents of memory
location IPORT

LD Ar (IPORT) ;GET DEVICE (PORT) ADDRESS
LD G,A
IN A,(C) ;READ DATA FROM INPUT PORT

The port address can be readily changed (by changing RAM location IPORT) to
accommodate multiple input devices attached to a single CPU or to handle different
device addresses used in different models, configurations, or computers.

3. Load the accumulator from the input port assigned to the memory address in
HL.

LD A, (HL) ;READ DATA FROM INPUT PORT

Here the same input routine can obtain data from any memory address. Of course,
that memory address is no longer available for normal use, thus reducing the actual
memory capacity of the computer.

4. Store the accumulator in output port 6.

OUT (6), A ;WRITE'DATA TO PORT 6

or

LD C,6 ; ACCESS PORT 6
OUT (C), A ;WRITE DATA TO PORT 6

In the second alternative, the indirect port address can be changed easily to accom
modate a different set of 110 ports or variable 110 devices.

5. Store the accumulator in the output port addressed by the contents of memory
location OPORT

LD HL,OPORT ;OBTAIN PORT ADDRESS
LD C, (HL)
OUT (C),A ;SEND DATA TO OUTPUT PORT

Here the port address is a variable.

6. Store the accumulator in the output port assigned to the memory address in HL.

LD (HL), A ;SEND DATA TO OUTPUT PORT

CHAPTEI< 1 GENERAL PROGRAMMING METHODS 53

Here the same output routine can send data to any memory address.

7. Set the Zero flag if bit 5 of port D416 is O.

IN A, (OD4H) ;READ DATA FROM PORT 04
BIT 5,A ;TEST BIT 5

If the bit position to be tested is 0, 6, or 7, a shift or AND A instruction can be used to
test it.

8. Load the Carry flag from bit 7 of the input port assigned to memory address
33A516·

or

LD A, (33A5H)
RLA

;OBTAIN DATA
;MOVE SIGN BIT TO CARRY

LD
RL

HL,(33A5H)
(HL) ;MOVE SIGN BIT OF INPUT DATA TO CARRY

RL (HL) could have unpredictable side effects, since it will attempt to store its result
back in the input port. Although the port is addressed as a memory location, it may not
be writable (that is, it might act like a ROM location). For example, it could be
attached to a set of switches that the microprocessor obviously cannot change.

9. Set bit 5 of output port A516.

LD A, 00 1OOOOOB
OUT (OA5H),A

;SET BIT 5 TO 1
;MOVE THE BIT TO PORT A5

;CLEAR BIT 3

To leave the other bits of port A516 unchanged, a copy of the data in RAM is needed.
Then the following sequence will set bit 5 to 1.

LD A, (COPY) ;GET COPY OF DATA
SET 5,A ;SET BIT 5
OUT (OA5H),A ;UPDATE OUTPUT DATA
LD (COPY),A ;UPDATE COPY OF DATA

Note that the CPU cannot generally read an output port, and the input port with the
same device address is not necessarily the same physical location.

10. Clear bit 3 of the output port assigned to memory address B07016.

LD HL, OB070H
RES 3, (HL)

Even though the output port is addressed as a memory location, it may not be
readable. If it is not, the overall effect of RES 3,(HL) will be uncertain; the instruction
will surely clear bit 3, but it will assign the other bits of the port the values supposedly
obtained by reading from them. These values are generally arbitrary unless the port is

;SET BIT 3 OF COPY

;SET BIT 3 OF OUTPUT DATA ALSO

54 Z80 ASSEMBLY LANGUAGE SUBROUTINES

latched and buffered. Saving a copy of the data in RAM location TEMP removes the
uncertainty. Now bit 3 can be cleared with the sequence

LD HL,TEMP
RES 3, (HL)
LD DE, B070H
LDI

Block Input and Output Instructions

The Z80 has special instructions that combine input or output with counting and
updating of a memory pointer. These so-called block 110 instructions work much like
the block move and block compare instructions discussed earlier. All block 1/0
instructions move data either from memory to an output port or from an input port to
memory (without involving the accumulator), update (either increment or decrement)
the memory pointer in register pair HL, and decrement the counter in register B. Note
that block 110 instructions use an 8-bit byte counter in register B, whereas block move
and block compare instructions use a 16-bit counter in BC. In block 110 instructions,
register C always contains the device address. The only meaningful flag is the Zero
flag; it is set to I if the instruction decrements B to 0, and to 0 otherwise.

Repeated block 110 instructions continue transferring data, updating HL, and
decrementing B until B is decremented to O. The drawback here is that continuous data
transfers make sense only if the I10 device operates at the same speed as the processor.
Obviously, most 110 devices operate much more slowly than the processor, and the
programmer must introduce a delay between transfers. For example, the processor
cannot transfer a block of data to or from a keyboard, printer, video display, or
magnetic tape unit without waiting between characters. Thus, repeated block 1/0
instructions are useful only to transfer data to devices that operate at processor speed,
such as a buffer memory or a peripheral chip.

The Z80's block 110 instructions are the following:

· INI (IND) moves a byte of data from the port address in C to the memory address
in HL, increments (decrements) HL, and decrements B.

· INIR (lNDR) repeats INI (lND) until B is decremented to o.

· OUTI (OUTD) moves a byte of data from the memory address in HL to the port
address in C, increments (decrements) HL, and decrements B.

· OTIR (OTDR) repeats OUTI (OUTD) until B is decremented to o.

Note that block 1/0 instructions reserve B, C, and HL, but not DE. These instruc
tions also cpange all the flags except Carry, although only the Zero flag is meaningful.

CHAPTER 1 GENERAL PROGRAMMING METHODS 55

Examples

1. Move a byte of data from memory address ADDR to output port aPORT

LD B,l ;NUMBER OF BYTES = 1
LD C,OPORT ;PORT ADDRESS = OPORT
LD HL,ADDR ;INITIALIZE MEMORY POINTER
OUTI ;MOVE A BYTE OF DATA

Obviously, the overhead ofloading the registers makes it uneconomical to use OUTI to
send a single byte of data.

2. Move two bytes of data from input port IPORT to memory addresses ADDR
and ADDR+ 1. Use subroutine DELAY to wait before each transfer; assume that
DELAY provides the proper time interval without affecting any registers.

INBYT:

LD
LD
LD
CALL
INI
,JR

B,2
C,IPORT
HL,ADDR
DELAY

NZ,INBYT

;NUMBER OF BYTES = 2
;PORT ADDRESS = IPORT
;INITIALIZE MEMORY POINTER
;WAIT BEFORE EACH INPUT BYTE
;READ A BYTE AND UPDATE

The Zero flag indicates whether the counter in B has been decremented to O. Not only
does INI transfer the data directly into memory, but it also increments HL and
decrements B.

3. Move ten bytes of data from memory addresses starting with ADDR to output
port aPORT Use subroutine DELAY to wait between bytes.

LD B,10 ;NUMBER OF BYTES = 10
LD C,OPORT ;PORT ADDRESS = OPORT
LD HL,ADDR ;INITIALIZE MEMORY POINTER

OUTBYT: OUTI ;WRITE A BYTE AND UPDATE
CALL DELAY ;WAIT BETWEEN BYTES
..JR NZ, OUTBYT

We cannot use the repeated block output instruction OTIR, since it does not allow a
delay between bytes.

4. Move 30 bytes of data from an input buffer addressed through input port IPORT
to memory addresses starting with ADDR. Assume that the processor can read
successive bytes of data from the buffer without waiting.

LD
LD
LD
INIR

B,30
C,IPORT
HL,ADDR

;NUMBER OF BYTES = 30
;PORT ADDRESS = IPORT
;INITIALIZE MEMORY POINTER
;READ A BLOCK OF DATA

This sequence does not allow any programmed delay between input operations, so it
makes sense only if the input device operates at the same speed as the processor.

;GET BASE ADDRESS OF DEVICE TABLE
;ACCESS ACTUAL DEVICE ADDRESS
;OBTAIN DEVICE ADDRESS
;'OBTAIN DATA FROM DEVICE

56 Z80 ASSEMBLY LANGUAGE SUBROUTINES

LOGICAL AND PHYSICAL DEVICES

One way to allow references to 110 devices by number is to use an 110 device table.
An 110 device table assigns the actual 110 addresses (physical devices) to the device
numbers (logical devices) to which a program refers. A systems program then uses the
table to convert the device numbers into actual 110 addresses.

The same applications program can be made to utilize different 110 devices by
making the appropriate changes in the 110 device table. A program written in a
high-level language may, for example, refer to input device #2 and output device #5.
For testing purposes, an operator may assign devices #2 and #5 to be the input and
output ports, respectively, of his or her console. For normal stand-alone operation, the
operator may assign device #2 to be an analog input unit and device #5 the system
printer. For operation by remote control, the operator may assign devices #2 and #5 to
be communications units used for input and output.

This distinction between logical and physical devices can be implemented by using
the instructions IN reg,(C) and OUT (C),reg. If a device table starting in address
IOTBL and consisting of 8-bit device addresses is used, input and output are general
ized as follows:

. Load the accumulator from a fixed device number DNUM.
LD A,(IOTBL+DNUM) ;GET DEVICE ADDRESS
LD C,A
IN A,(C) ;OBTAIN DATA FROM DEVICE

. Load the accumulator from the device number in memory location DEVNO.
LD A, (DEVNO) ;GET DEVICE NUMBER
LD L,A ;MAKE DEVICE NUMBER INTO INDEX
LD H,O
LD DE, IOTBL
ADD HL,DE
LD C, (HL)
IN A,(C)

. Store the accumulator in a fixed device number DNUM.

LD HL,IOTBL+DNUM ;GET DEVICE ADDRESS
LD C,(HL)
OUT (C),A ;SEND DATA TO DEVICE

. Store the accumulator in the device number in memory location DEVNO.

LD B,A
LD A, (DEVNO)
LD L,A
LD H,O
LD DE, IOTBL
ADD HL,DE
LD C,(HL)
OUT (C), B

;SAVE OUTPUT DATA
;GET DEVICE NUMBER
;MAKE DEVICE NUMBER INTO INDEX

;GET BASE ADDRESS OF DEVICE TABLE
;ACCESS ACTUAL DEVICE ADDRESS
;OBTAIN DEVICE ADDRESS
;SEND DATA TO DEVICE

CHAPTER 1 GENERAL PROGRAMMING METHODS 57

In real applications (see Chapter 10), the device table generally contains the starting
addresses of 110 subroutines (drivers) rather than actual device addresses.

STATUS AND CONTROL

Status and control signals can be handled like any other data. The only special
problem is that the processor cannot ordinarily read output ports. To know the current
contents of an output port, retain a copy in RAM of the data stored there.

Examples

1. Branch to address DEST if bit 3 of input port 6 is 1.

IN A,(6)
BIT 3,A
..JR NZ,DEST

;READ STATUS FROM PORT 6
;TEST BIT 3
;BRANCH IF BIT 3 IS 1

;GET COPY OF DATA

;SET BIT 5 OF PORT
;SEND DATA TO OUTPUT PORT
;UPDATE COpy OF DATA

;CLEAR BITS 2,3, AND 4
;SET CONTROL FIELD TO 6
;SEND DATA TO OUTPUT PORT
;UPDATE COPY OF DATA

2. Branch to address DEST if bits 4,5, and 6 of input port STAT are 5 (101 binary).

IN A, (STAT) ;READ STATUS
AND 01110000B ;MASK OFF BITS 4,5,AND 6
CP 01010000B ;IS STATUS FIELD = 5?
..JR Z,DEST ;YES, BRANCH TO DEST

3. Set bit 5 of output port CNTL to 1. Assume that a copy of the data is in a table
starting at address OUTP.

LD HL,OUTP+CNTL
LD A, (HL)
OR 00100000B
OUT (CNTL),A
LD (HL),A-

Update the copy every time the data is changed.

4. Set bits 2,3, and 4 of output port CNTL to 6 (110 binary). Assume that a copy of
the data is in a table starting at address OUTP.

LD HL,OUTP+CNTL ;GET COpy OF DATA
LD A, (HL)
AND 11100011B
OR 00011000B
OUT (CNTL),A
LD (HL),A

Retaining copies of the data in memory (or using the values stored in a latched,
buffered output port) allows changing part of the data without affecting other parts
that may have unrelated meanings. For example, changing the state of one indicator

58 Z80 ASSEMBLY LANGUAGE SUBROUTINES

light (such as a light that indicated remote operation) will not affect other indicator
lights attached to the same port. Similarly, changing one control line (for example, a
line that determined whether an object was moving in the positive or negative
X-direction) would not affect other control lines attached to the same port.

5. Branch to address DEST if bit 7 of input port IPORT is O.

LD
IN
,JP

C,IPORT
A, (C)
Z,DEST

;ESTABLISH PORT ADDRESS
;READ DATA FROM PORT
;BRANCH IF INPUT BIT 7 IS 0

The instruction IN reg,(C) affects the Sign and Zero flags, whereas IN A,(port) does
not.

PERIPHERAL CHIPS

The most common peripheral chips in Z80-based computers are the PIO (Parallel
Input/ Output device), SIO (Serial Input/ Output device), and CTC (Clock/Timer
Circuit). All these devices can perform many functions, much as the microprocessor
itself can. Of course, peripheral chips perform fewer different functions than proces
sors, and the range of functions is much more limited. The idea behind programmable
peripheral chips is that each chip contains many useful circuits; the designer selects the
one he or she wants to use by storing arbitrary codes in control registers, much like
selecting circuits from a designer's casebook by specifying arbitrary page numbers or
other designations. The advantages of programmable chips are that a single board
containing such devices can handle many applications, and changes or corrections can
be made by changing selection codes rather than by redesigning circuit boards. The
disadvantages of programmable chips are the lack of standards and the difficulty of
learning and explaining how specific chips operate.

Chapter 10 contains typical initialization routines for the PIO, SIO, and CTC
devices. (The PIO and CTC are discussed in detail in the Osborne 4 & 8-Bit Micro
processor Handbook. 12) We will provide only a brief overview of the PIO device here,
since it is the most widely used. Bas and Kaynak describe a typical industrial applica
tion using a PIO.13

PIO (Parallel Input/Output Device)
General Description

The PIO contains two 8-bit ports, A and B. Each port contains

. An 8-bit output register.

. An 8-bit input register.

CHAPTER 1 GENERAL PROGI<AMMING METHODS 59

· A 2-bit mode control register, which indicates whether the port is in an output,
input, bidirectional, or control mode.

· An 8-bit input j output control register, which determines whether the correspond
ing data pins are inputs (1) or outputs (0) in the control mode.

· Two control lines (STB and RDY) that can be used for handshaking signals (the
contents of the mode control register determine how these lines operate).

· An interrupt enable bit.

· A 2-bit mask control register (used only in the control mode) that determines the
active polarity of the inputs and whether they will be logically ANDed or ORed to
form an interrupt signal.

· An 8-bit mask register (used only in the control mode) that determines which port
lines will be monitored to form the interrupt signal.

· An 8-bit vector address register used with the interrupt system.

Here, the important points are the input and output registers, the mode control
register, the input j output control register, and the control lines. The interrupt-related
features of the PIO are discussed in Z80 Assembly Language Programming. 14

The meanings of the bits in the various control and mask registers are related to the
underlying hardware and are entirely arbitrary as far as the programmer is concerned.
Tables are provided here and in Appendix B for looking them up.

Each PIO occupies four input port addresses and four output port addresses. The
Bj A SEL (Port B or A select) and Cj D SEL (Control or Data select) lines choose one
of the four ports as described in Table 1-10. Most often, designers attach address line
Ao to Bj A SEL and Al to Cj D SEL. The PIO then occupies the four consecutive port
addresses given in the last column of Table 1-10.

Clearly, there are far more internal control registers than there are port addresses
available. In fact, all the control registers for each port occupy one address determined

Table 1·10. PIO Addresses

Control or Port B or A Register Port Address (Starting
Data select Select Addressed with PIOADD)

0 0 Data Register A PIOADD

0 I Data Register B PIOADD+I

I 0 Control A PIOADD+2

I I Control B PIOADD+3

The port addresses assume that C; D SEL is tied to Al and B/ A SEL to Ao'

60 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Table 1·11. Addressing of PIO Control Registers

Register Addressing

Mode Control 0 3 = O2 = OJ = Do = I
Input/ Output Control Next byte after port placed in mode .3
Mask Control Register 0 3 0, O2 = D) 0 0 = I
Interrupt Mask Register Next byte after mask control register accessed with 0 4 = I
Interrupt Enable D3 = O2 = 0, D) 0 0 = I
Interrupt Vector 0 0 = I

by the C/D SEL connection. Thus, some of the data bits sent to a control register are
actually used for addressing. Note the following situations (see Table 1-11):

· If Do = 0, the remaining data bits are loaded into the interrupt vector register.

· IfD.3 = 0 and D2 = D I= Do = 1, the remaining data bits are loaded into the mask
control register. If D4 = 1, the next control byte is loaded into the interrupt mask
register. Interrupts can be enabled (D7 = 1) or disabled (D7 0) with D.3 = D2 = 0,
DI Do= 1.

· If D.3, D2, D I, and Do are alII's, the remaining data bits are loaded into the mode
control register. If D7 D6 = 1(that is, the port has been placed in the control mode),
the next control byte is loaded into the input/ output control register.

This sharing of an external address means

· The programmer must be careful to specify the proper addresses, data values, anc1
order of operations. The actual destination of an OUT instruction directed to a PIO
control address depends on the data value and may also depend on the OUT instruc
tion that preceded it.

· The programmer should document the PIO initialization in detail. The device is
complex, and a reader cannot be expected to understand the initializing sequence.

The control registers of the PIO are usually initialized only in an overall startup
routine. Other routines typically refer only to the PIO input and output registers. Since
all of its control registers share a port address, a repeated block output instruction
(OTIR or OTDR) can be used to initialize a PIO. No timing problem occurs, since the
PIO operates at the same speed as the CPU. Chapter 10 contains an example showing
the use of repeated block output instructions to initialize PIOs and other peripheral
chips.

CHAPTER 1 GENERAL PROGRAMMING METHODS 61

PIO Operating Modes

A startup program selects the operating mode of a PIa port by writing a control
byte to the PIa in the form shown in Figure 1-10. The lower table in Figure 1-10
describes the operating modes and their associated control bytes. Note that only bits 6
(Mo)and 7 (M J) affect the operating mode; bits 4 and 5 are not used and bits 0 through
3 are used for addressing. When power is turned on, the PIa comes up in mode 1
(input). The modes may be summarized as follows:

. Mode 0 - Output (bit 7 = bit 6 = 0)
Writing data into the port's output register latches the data and causes it to appear

on the port's data bus. The Ready (RDY) line goes high to indicate Data Ready; it
remains high until the peripheral sends a rising edge (a 0-to-1 or 10w-to-high transition)
on the Strobe (STB) line to indicate Data Accepted or Device Ready. The rising edge
of STB causes an interrupt if the interrupt is enabled.

. Mode 1- Input (bit 7 = 0, bit 6 = 1)
The peripheral latches data into the port's input register using the Strobe signal. The

rising edge of STB causes an interrupt (if enabled) and deactivates RDY (makes it 0).
When the CPU reads the data, RDY goes high to indicate Data Accepted or Input
Register Empty. Note that the peripheral can strobe data into the register regardless of
the state of RDY. Thy. programmer is therefore responsible for guarding against
overrun (new data being placed in the register before the CPU has read the old data).

Set Mode

Ml MO Mode

0 0 Output
0 I Input
I 0 Bidirectional
I I Bit Control

PIO
Meaning

Control Byte
Mode (Binary) (Hex)

0 Output 00001 III OF
I Input o100III I 4F
2 Bidirectional IOOOllll 8F
3 Control lIOOllll CF

Note that bits 4 and 5 are not used and could have
any values.

If a port is placed in mode 3. the
next byte sets the 110 control
register:

1/0= I Sets bit to Input
1/0= 0 Sets bit to Output

Figure 1·10. Mode control for the Z80 PIO

62 Z80 ASSEMBLY LANGUAGE SUBROUTINES

· Mode 2 - Bidirectional (bit 7 = I, bit 6 = 0)
Since this mode uses all four handshake lines, it is allowed only on port A. The port

A RDY and STB signals are used for output control and the port B RDY and STB
signals are used for input control. The only difference between this mode and a
combination of modes°and I is that data from the port A Output register is enabled
onto the port's data bus only when A STB is active. This allows the port A bus to be
used bidirectionally under the control of A STB (Output Data Request) and B STB
(Input Data Available). Note that operations on input register A govern port B's
control signals in this mode.

· Mode 3 - Control (bit 7 I, bit 6 = I)
This mode does not use the RDY and STB signals. It is intended for status and

control applications in which each bit has an individual meaning. When mode 3 is
selected, the next control byte sent to the PIO defines the directions of the port's bus
lines. A I in a bit position makes the corresponding bus line an input, whereas a °
makes it an output.

Note the following features of the PIO's operating modes:

· In modes 0, I, and 2, the peripheral indicates Data Ready, Device Ready, or Data
Accepted with a rising edge on the STB line. This edge also causes an interrupt if the
interrupt is enabled.

· In modes 0, I, and 2, the PIO indicates Data Ready, Input Buffer Empty, or Data
Accepted by sending RDY high. This signal remains high until the next rising edge on
STB.

· The bidirectional mode (mode 2) applies only to port A, and port B must be placed
in mode 3 (control) since all the handshaking lines are already committed.

· The inputI output control register is used only in the control mode (mode 3).
Otherwise, the entire 8-bit port is used for either input or output.

· There is no way for the processor to determine if a pulse has occurred on STB if
interrupts are not being used. The PIO is designed for use in interrupt-driven systems
rather than in programmed 110 systems. STB should be tied low if it is not being used.

· The processor cannot control the RDY lines directly. The RDY line on a port goes
high when data is transferred to or from the port and goes low on the rising edge of
STB.

· The contents of the output register can be read if the port is in the output or
bidirectional mode. If the port is in the control mode, the output register data from the
lines assigned as outputs can be read. The contents of control registers cannot be read.
If a program needs to know their contents, it must save copies in RAM of the values
stored there.

· If the RDY output is tied to the STB input on a port in the output mode, RDY will
go high for one clock period after each output operation. This brief pulse can be used
to multiplex displays.

;MAKE PORT B OUTPUT

;MAKE PORT A INPUT

CHAPTER 1 GENERAL PROGRAMMING METHODS 63

PIO Initialization

When power is turned on, the PIa comes up in the input mode with all interrupts
disabled and inhibited and control signals deactivated (low). The steps in initializing a
PIa port are

. Select the operating mode by writing the appropriate control byte into the mode
control register. Interrupt control as well as 110 mode information may have to be
sent .

. Ifin mode 3, establish the directions of the 110 pins by writing a control byte into
the inputI output control register. This byte must follow the control byte that selected
mode 3.

Examples

1. Make port B output.

LD A,OOOOllllB
OUT (PIOCRB),A

Bits 0 through 3 of the control byte are alII's to address the mode control register. Bits
6 and 7 are both O's to put the port in the output mode. Bits 4 and 5 are not used.

2. Make port A input.

LD A,01001111B
OUT (PIOCRA),A

Bit 7 = 0 and bit 6 = I to put the port in the input mode.

3. Make port A bidirectional.

LD A,10001111B
OUT (PIOCRA),A

;MAKE PORT A BIDIRECTIONAL

Bit 7 I and bit 6 = 0 to put the port in the bidirectional mode. Remember that only
port A can be operated in the bidirectional mode, and that port B must then be
operated in the control mode.

4. Make port A control with all lines inputs.

LD A,11001111B ;MAKE PORT A CONTROL
OUT (PIOCRA),A
LD A,llllllllB ;ALL BITS INPUTS
OUT (PIOCRA),A

The first OUT instruction puts port A in the control mode, since bits 6 and 7 are both
1. The second OUT operation to the same address loads a different register (the

64 Z80 ASSEMBLY LANGUAGE SUBROUTINES

input/ output control register). A °in a bit position of that register makes the
corresponding pin an output, while a 1makes it an input. The polarity here is arbitrary,
and many bidirectional devices use the opposite convention.

5. Make port B control with all lines outputs.

LD A,11001111B ;MAKE PORT B CONTROL
OUT (PIOCRB),A
SUB A ; ALL BITS OUTPUTS
OUT (PIOCRB),A

The second byte is directed automatically to the input/ output control register if the
first byte puts the port in the control mode.

6. Make port A control with lines 1, 5, and 6 inputs and lines 0, 2, 3, 4, and 7
outputs.

LD A,11001111B
OUT (PIOCRA),A
LD A,Ol100010B

;MAKE PORT A CONTROL

;1,5,6 IN--O,2,3,4,7 OUT

INTERRUPT SERVICE ROUTINES
More information on material in this section can be found in the book Practical

Microcomputer Programming: The Z80 by W.J. Weller, Chapter 16.
Z80 interrupt systems may operate in any of three modes. IS In all three modes, the

processor responds to an interrupt by executing a CALL or RST instruction which
transfers control to a specific memory address and saves the current program counter
at the top of the stack. Table 1-12 lists the destination addresses for the RST instruc
tions and the non-maskable interrupt. No other registers (besides the program coun
ter) are saved automatically.

There are two common approaches to saving registers:

. If there is only a single level of interrupts, primary registers may be saved in the
alternate set. The service routine begins with

EX AF,AF~ ;SAVE PRIMARY REGISTERS IN ALTERNATES
EXX

The EXX instruction exchanges registers B, C, D, E, H, and L with their primed
equivalents. The service routine must end by restoring the original primary registers
with

EXX
EX AF,AF'-

;RESTORE ORIGINAL PRIMARY REGISTERS

This approach assumes that the alternate (primed) registers are reserved for use in
interrupt service routines.

CHAPTER 1 GENERAL PROGRAMMING METHODS 65

Table 1·12. Destination Addresses for RST (Restart) Instructions and
the Non-Maskable Interrupt

Destination Address
RST Instruction Operation Code

(Mnemonic) (Hex)
(Hex) (Decimal)

RSTO C7 0000 0
RST8 CF 0008 08
RSTIOH 07 0010 16
RST 18H OF 0018 24
RST 20H E7 0020 32
RST 28H EF 0028 40
RST 30H F7 0030 48
RST 38H FF 0038 56
Non-maskable 0066 102

interrupt

. If there are several levels of interrupts, each service routine must save all registers
that it uses in the stack. Since the Z80 has so many registers, most programmers keep
their service routines simple so that they must save only a few registers. Otherwise, the
overhead involved in servicing interrupts (sometimes called the interrupt latency)
becomes excessive. A typical sequence for saving the primary registers in the stack is

PUSH AF
PUSH BC
PUSH DE
PUSH HL

;SAVE REGISTERS

The opposite sequence restores the primary registers.

POP HL
POP DE
POP BC
POP AF

;RESTORE REGISTERS

Interrupts must be reenabled explicitly with EI immediately before the RET instruc
tion that terminates the service routine. The EI instruction delays the actual enabling
of interrupts for one instruction cycle to avoid unnecessary stacking of return ad
dresses (that is, an RET instruction can remove the return address from the stack
before a pending interrupt is recognized).

You must be careful to save any write-only registers that may have to be restored at
the end of the routine. For example, the PIO's control registers are all write-only, and

66 Z80 ASSEMBLY LANGUAGE SUBROUTINES

many external priority registers are also write-only. Copies of such registers must be
saved in RAM and restored from the stack. A typical example is

PUSH
PUSH
PUSH
PUSH
LD
PUSH
LD
OUT
LD

AF
BC
DE
HL
A, (PRTY)
AF
A,NPRTY
PPORT
(PRTY),A

;SAVE REGISTERS

;SAVE OLD PRIORITY

;GET NEW PRIORITY
;PLACE IT IN EXTERNAL PRIORITY REGISTER
;SAVE COPY OF NEW PRIORITY IN RAM

The restoration procedure must recover the previous priority as well as the original
contents of the registers.

POP AF
OUT PPORT
LD (PRTY), A
POP HL
POP DE
POP BC
POP AF

;RESTORE OLD PRIORITY
;PLACE IT IN EXTERNAL PRIORITY REGISTER
;SAVE COPY OF PRIORITY IN RAM
;RESTORE REGISTERS

To achieve general reentrancy, the stack must be used for all temporary storage
beyond that provided by the registers. As noted in the discussion of parameter passing,
space is assigned on the stack (NPARAM bytes) with the sequence

LD HL,-NPARAM
ADD HL,SP
LD SP,HL

;ASSIGN NPARAM EMPTY BYTES

Later, of course, the temporary storage area is discarded with the sequence

LD HL,NPARAM
ADD HL,SP
LD SP,HL

;REMOVE NPARAM BYTES FROM STACK

If NPARAM is small, save execution time and memory by replacing these sequences
with NPARAM DEC SP or INC SP instructions. Chapter 11 contains examples of
simple :nterrupt service routines.

Interrupt service routines that are based on signals from Z80 peripheral chips (PIOs,
SIOs, or CTCs) or that utilize the non-maskable input require special terminating
instructions. These special instructions restore the program counter from the top of
the stack just like the normal RET The RETI (return from interrupt) instruction also
signals the peripheral chips that the service routine has been completed, thus unblock
ing lower priority interrupts. The RETN (return from non-maskable interrupt)
instruction also restores the interrupt enable logic, thus reenabling interrupts if (and
only if) they were enabled when the non-maskable interrupt occurred.

CHAPTER 1 GENERAL PROGRAMMING METHODS 67

MAKING PROGRAMS RUN FASTER

More information on material in this section can be found in an article by T. Doll
hoff, "Microprocessor Software: How to Optimize Timing and Memory Usage. Part
Four: Techniques for the Zilog Z80," Digital Design, February 1977, pp. 44-45.

In general, programs can be made to run substantially faster only by first determin
ing where they spend their time. This requires determining which loops (other than
delay routines) the processor is executing most often. Reducing the execution time of a
frequently executed loop will have a major effect because of the multiplying factor. It is
thus critical to determine how often instructions are being executed and to work on
loops in the order of their frequency of execution.

Once it is determined which loops the processor executes most frequently, reduce
their execution time with the following techniques:

o Eliminate redundant operations. These may include a constant that is being added
during each iteration or a special case that is being tested repeatedly. Another example
is a constant value or a memory address that is being fetched from memory each time
rather than being stored in a register or register pair.

o Reorganize the loop to reduce the number of jump instructions. You can often
eliminate branches by changing the initial conditions, inverting the order of opera
tions, or combining operations. In particular, you may find it helpful to initialize
everything one step back, thus making the first iteration the same as all the others.
Inverting the order of operations can be helpful if numerical comparisons are involved,
since the equality case may not have to be handled separately. Reorganization may
also combine condition checking inside the loop with the overall loop control.

o Use in-line code rather than subroutines. This will save at least a CALL and RET:

o Use the stack rather than specific memory addresses for temporary storage.
Remember that EX HL,(SP) exchanges the top of the stack with register pair HL and
thus can serve to both restore an old value and save the current one.

o Assign registers to take maximum advantage of such specialized instructions as
LD HL,(ADDR); LD (ADDR),HL; EX DE, HL; EX HL,(SP); DJNZ; and the block
move, compare, and 110 instructions. Thus it is preferable to always use B or BC for a
counter, HL for an indirect address, and DE for another indirect address if needed.

o Use the block move, block compare, and block 110 instructions to handle blocks
of data. These instructions can replace an entire program sequence, since they combine
counting and updating of pointers with the actual data manipulation or transfer
operations. Note, in particular, that the block move and block 110 instructions
transfer data to or from memory without using the accumulator.

o Use the 16-bit instructions whenever possible to manipulate 16-bit data. These
instructions are ADC, ADD, DEC, EX, INC, LD, POP, PUSH, and SBC.

68 Z80 ASSEMBLY LANGUAGE SUBROUTINES

· Use instructions that operate directly on data in user registers or in memory to
avoid having to save and restore the accumulator, HL, or an index register. These
instructions include DEC, EX, INC, LD, POP, PUSH, and the bit manipulation and
shift instructions.

· Minimize the use of the index registers, since they always require extra execution
time and memory. The index registers are generally used only as backups to HL and in
handling data structures that involve many fixed offsets.

· Minimize the use of special Z80 instructions that require a 2-byte operation code.
These always require extra execution time and memory. Examples are BIT, RES, SE'T,
SLA, SRA, and SRL, as well as some load instructions such as LD DE,(ADDR), LD
(ADDR),BC, and LD SP,(ADDR).

· Take advantage of specialized short instructions such as the accumulator shifts
(RLA, RLCA, RRA, and RRCA) and DJNZ.

· Use absolute jumps (JP) rather than relative jumps (JR). The absolute jumps take
less time if a branch actually occurs.

· Organize sequences of conditional jumps to minimize average execution time.
Branches that are often taken should come before ones that are seldom taken, for
example, checking for a result being negative (true 50% of the time if the value is
random) before checking for it to be zero (true less than 1% of the time if the value is
random).

· Test for conditions under which a sequence has no effect and branch around it if
the conditions hold. This will be profitable if the sequence is long, and it frequently
does not change the result. A typical example is the propagation of carries through
higher order bytes. Ifa carry seldom occurs, it will be faster on the average to test for it
rather than simply propagate a O.

A general way to reduce execution time is to replace long sequences of instructions
with tables. A single table lookup can perform the same operation as a sequence of
instructions if there are no special exits or program logic involved. The cost is extra
memory, but that may be justified if the memory is available. If enough memory is
available, a lookup table may be a reasonable approach even if many of its entries are
repetitive-that is, even if many inputs produce the same output. In addition to its
speed, table lookup is also general, easy to program, and easy to change.

MAKING PROGRAMS USE LESS MEMORY

Only by identifying common instruction sequences and replacing those sequences
with subroutine calls can a program be made to use significantly less memory. The
result is a single copy of each sequence; the cost is the extra execution time of the

CHAPTER 1 GENERAL PROGRAMMING METHODS 69

CALL and RET instructions. The more instructions placed in subroutines, the more
memory is saved. Of course, such subroutines are typically not general and may be
difficult to understand or use. Some sequences may even be available in a monitor or
other systems program. Then those sequences can be replaced with calls to the systems
program as long as the return is handled properly.

Some methods that reduce execution time also reduce memory usage. In particular,
eliminating redundant operations, reorganizing loops, using the stack, organizing the
use of registers, using the l6-bit registers, using block instructions and short forms,
operating directly on memory or registers, and minimizing the use of the index
registers and special Z80 instructions reduce both memory usage and execution time.
Of course, using in-line code rather than loops and subroutines reduces execution time
but increases memory usage. Absolute and relative jumps represent a minor tradeoff
between memory and execution time; absolute jumps are faster (if a branch occurs) but
use more memory.

Lookup tables generally use extra memory but save execution time. Some ways to
reduce their memory requirements are to eliminate intermediate values and interpo
late the results, eliminate redundant values with special tests, and reduce the range of
input values. 16,17 Often a few prior tests or restrictions will greatly reduce the size of the
required table.

REFERENCES

1. Weller, W.J., Practical Microcomputer Programming: The Z80, Evanston, Ill.:
Northern Technology Books, 1979.

2. Fisher, W.P., "Microprocessor Assembly Language Draft Standard," IEEE
Computer, December 1979, pp. 96-109. Further discussions of the draft standard
appear on pp. 79-80 of IEEE Computer, April 1980 and on pp. 8-9 of IEEE Computer,
May 1981. See also Duncan, EG., "Level-Independent Notation for Microcomputer
Programs," IEEE Micro, May 1981, pp. 47-56.

3. Osborne, A. An Introduction to Microcomputers: Volume I-Basic Concepts,
2nd ed., Berkeley, Calif.: Osborne/ McGraw-Hill, 1980.

4. Fisher, op.cit.

5. Osborne, op. cit.

6. Weller, op.cit., p. 224.

7. Ibid., pp. 19-26.

8. Ibid.

9. Ibid., p. 69.

70 Z80 ASSEMBLY LANGUAGE SUBROUTINES

10. Shankar, K.S., "Data Structures and Abstractions," IEEE Computer, April,
1980, pp. 67-77.

11. Tenenbaum, A. and M. Augenstein, Data Structures Using Pascal, Englewood
Cliffs, N.J.: Prentice-Hall, 1981.

12. Osborne, A. and G. Kane, 4 & 8-Bit Microprocessor Handbook, Berkeley,
Calif.: Osborne/ McGraw-Hill, 1981, pp. 7-45 to 7-54 (PIO), pp. 7-54 to 7-62 (CTC).

13. Bas, S. and O. Kaynak, "Microprocessor Controlled Single Phase Cycloconver
ter," 1981 IECI Proceedings on Industrial Applications of Mini and Microcomputers,
pp. 39-44. Available from IEEE, 445 Hoes Lane, Piscataway, N.J. 08854 (catalog no.
81 CH 1714-5).

14. Leventhal, L., Z80 Assembly Language Programming, Berkeley, Calif.:
Osborne/ McGraw-Hill, 1979, Chapter 12.

15. Ibid.

16. Seim, T:A., "Numerical Interpolation for Microprocessor-Based Systems,"
Computer Design, February 1978, pp. 111-116.

17. Abramovich, A. and T:R. Crawford, "An Interpolating Algorithm for Control
Applications on Microprocessors," 1978 IECI Proceedings on Industrial Applications
of Microprocessors, pp. 195-201. This Proceedings is available from IEEE, 445 Hoes
Lane, Piscataway, N.J. 08854.

Chapter 2 Implementin
Additional Instructi
Addressing 0 S

s nd

This chapter shows how to implement instructions and addressing modes that are
not included in the Z80 instruction set. Of course, no instruction set can ever include all
possible combinations. Designers must choose a set based on how many operation
codes are available, how easily an additional combination c0uld be implemented, and
how often it would be used. A description of additional instructions and addressing
modes does not imply that the basic instruction set is incomplete or poorly designed.

The chapter will concentrate on additional instructions and addressing modes that
are

Obvious parallels to those included in the instruction set.

. Described in Fischer's "Microprocessor Assembly Language Standard ': I

Discussed in Volume 1 of An Introduction to Microcomputers. 2

Implemented on other microprocessors, especially ones that are closely related or
partly compatible. 3

This chapter should be of particular interest to those who are familiar with the
assembly languages of other computers.

INSTRUCTION SET EXTENSIONS

In describing extensions to the instruction set, we follow the organization sug
gested in the draft standard for IEEE Task P694. 4 Instructions are divided into the
following groups (listed in the order in which they are discussed): arithmetic, logical,
data transfer, branch, skip, subroutine call, subroutine return, and miscellaneous.
For each type of instruction, types of operands are discussed in the following order:
byte (8-bit), word (l6-bit), decimal, bit, nibble or digit, and multiple. In describing
addressing modes, we use the following order: direct, indirect, immediate, indexed,

71

72 Z80 ASSEMBLY LANGUAGE SUBROUTINES

register, autopreincrement, autopostincrement, autopredecrement, autopostdecre
ment, indirect preindexed (also called preindexed or indexed indirect), and indirect
postindexed (also called postindexed or indirect indexed).

ARITHMETIC INSTRUCTIONS

This group includes addition, addition with Carry, subtraction, subtraction in
reverse, subtraction with Carry (borrow), increment, decrement, multiplication, divi
sion, comparison, two's complement (negate), and extension. Instructions that do not
clearly fall into a particular category are repeated for convenience.

Addition Instructions (Without Carry)

1. Add memory location ADDR to accumulator.

LD HL,ADDR ;POINT TO DATA
ADD A, (HL) ;THEN ADD IT

2. Add Carry to accumulator.

ADC A.O ;ACC = ACC + CARRY + 0

3. Decimal add Carry to accumulator.

ADC A.O ;ACC = ACC + CARRY + 0
DAA IN DECIMAL

4. Decimal add VALUE to accumulator.

ADD A,VALLIE
DAA

;ACC = ACC + VALUE
IN DECIMAL

5. Decimal add register to accumulator.

ADD A,t-eg
DAA

;ACC = ACC + REG
IN DECIMAL

6. Add 16-bit number VAL16 to HL.

LD rp,VAL16
ADD HL.rp ;HL = HL + VAL16

rp can be either BC or DE.

7. Add 16-bit number VAL16 to an index register.

LD rp,VAL16
ADD xy,rp ;XY = XY + VAL16

rp can be either BC or DE.

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 73

8. Add memory locations ADDR and ADDR+ I (MSB in ADDR+ I) to HL.

LD rp,(ADDR)
ADD HL,rp

The 16-bit data is stored in the usual Z80 format with the less significant byte first (at
the lower address).

9. Add memory locations ADDR and ADDR+ I (MSB in ADDR+ I) to an index
register.

LD rp, (ADDR)
ADD xy,rp

10. Add memory locations ADDR and ADDR+ I (MSB in ADDR+ I) to memory
locations SUM and SUM+ I (MSB in SUM+ I).

LD HL, (SUM) ;GET CURRENT SUM
LD DE, (ADDR) ;ADD ELEMENT
ADD HL,DE
LD (SUM),HL ;SAVE UPDATED SUM

11. Add the 16-bit number VAL 16 to memory locations ADDR and ADDR+ 1
(MSB in ADDR+ I).

LD HL,(SUM)
LD DE,VAL16
ADD HL,DE
LD (SUM), HL

;GET CURRENT SUM
;ADD ELEMENT

;SAVE UPDATED SUM

Addition Instructions (with Carry)

I. Add memory location ADDR to accumulator with Carry.

LD HL,ADDR ;POINT TO DATA
ADC A, (HL) ;THEN ADD IN DATA

2. Add Carry to accumulator.

ADC A,O ;ACC = ACC + CARRY + 0

3. Decimal add VALUE to accumulator with Carry.

ADC A,VALUE ;ACC = ACC + VALUE + CARRY
DAA IN DECIMAL

4. Decimal add register to accumulator with Carry.

ADC A,reg ;ACC = ACC + REG + CARRY
DAA IN DECIMAL

74 Z80 ASSEMBLY LANGUAGE SUBROUTINES

5. Add 16-bit number VALI6 to HL with Carry.

LD rp,VAL16
ADC HL,rp ;HL = HL + VAL16 + CARRY

6. Add memory locations ADDR and ADDR+ I (MSB in ADDR+ I) to HL with
Carry.

LD t- p, (ADDR)
ADC HL, tOP ;HL HL + ~ADDR) + CARRY

Subtraction Instructions (Without Borrow)

1. Subtract memory location ADDR from accumulator.

LD HL,ADDR
SUB (HL)

;POINT TO DATA
;THEN SUBTRACT IT

2. Subtract borrow (Carry) from accumulator.

SBC A,O ; ACC = ACC - CARRY

3. Decimal subtract VALUE from accumulator.

SUB VALUE
DAA

;ACC = ACC - VALUE
IN DECIMAL

4. Decimal subtract register from accumulator.

SUB nag
DAA

;ACC = ACC - REG
IN DECIMAL

Since the Z80 has an Add/ Subtract flag, it can perform decimal subtraction directly.
On the 8080 and 8085 processors, the programmer must implement decimal subtrac
tion as the addition of a negative number.

5. Subtract register pair from HL.

AND A ;CLEAR CARRY
SBC HL 7 rp ;SUBTRACT REGISTER PAIR WITH CARRY

The Z80 has a subtract register pair with Carry instruction, but no plain subtract
register pair (without Carry).

6. Subtract 16-bit number VALI6 from HL.

LD rp,-VAL16
ADD HL 7 tOP

or

AND A
LD tOP, VAL16
SBC HL 7 rp

;CLEAR CARRY

;SUBTRACT 16-BIT NUMBER FROM HL

;CLEAR CARRY
;THEN SUBTRACT WITH CARRY

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 75

rp can be either BC or DE. Carry is an inverted borrow in the first alternative and a true
borrow in the second. The first alternative is obviously much shorter, particularly since
SBC HL requires a 2-byte operation code.

7. Subtract memory locations ADDR and ADDR+ I (MSB in ADDR+ I) from
HL.

AND A
LD t- p, (ADDR)
SBC HL, top

There is no subtract register pair (without Carry) instruction.

Subtraction in Reverse Instructions

1. Subtract accumulator from VALUE and place difference in accumulator.

or

NEG
ADD A,VALUE

LD t-eg,A
LD A, VALUE
SUB reg

;NEGATE A
;FORM - A + VALUE

;CALCULATE VALUE - ACC

The Carry is an inverted borrow in the first method and a true borrow in the second.

2. Subtract accumulator from register and place difference in accumulator.

NEG ;NEGATE A
ADD A,reg ;FORM - A + REG

The Carry is an inverted borrow; that is, it is I if the subtraction does not require a
borrow.

3. Decimal subtract accumulator from VALUE and place difference in accumu
lator.

LD t-eg, A
LD A, VALUE
SUE: reg
[fAA

;CALCULATE VALUE - ACC

4. Decimal subtract accumulator from register and place difference in accumulator.

LD t-eg!, A
LD A,reg
SUB reg!
DAA

;CALCULATE REG - ACC

;IN DECIMAL

76 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Subtraction with Borrow (Carry) Instructions

1. Subtract memory location ADDR from accumulator with borrow.

LD HL,ADDR ;POINT TO DATA
SBC AT(HL) ;THEN SUBTRACT WITH BORROW

2. Subtract borrow (Carry) from accumulator.

SBC ATO ;FORM A - BORROW

3. Decimal subtract inverted borrow from accumulator (Carry = I if no borrow
was generated, 0 if a borrow was generated).

ADC AT99H ;ADD 99 PLUS CARRY
DAA

The final Carry is 1 if the subtraction generates a borrow and 0 if it does not.

4. Decimal subtract VALUE from accumulator with borrow.

SBC ATVALUE
DAA

;A = A - VALUE - BORROW
IN DECIMAL

5. Decimal subtract register from accumulator with borrow.

SBC AT t-eg
DAA

;A = A - REG - BORROW
IN DECIMAL

6. Subtract 16-bit number VAL16 from HL with borrow.

LD tOP T VAL16
SBC HL TtOP

Increment Instructions

;HL = HL - VAL16 - BORROW

1. Increment memory location ADDR.

LD HLTADDR
INC (HL)

2. Increment accumulator, setting the Carry flag if the result is O.

ADD AT 1

Remember that INC does not affect Carry, but it does affect the Zero flag.

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 77

3. Decimal increment accumulator (add 1 to A in decimal).

ADD A,l
DAA

You cannot use INC, since it does not affect Carry.

4. Decimal increment register (add I to reg in decimal).

LD A,reg
ADD A,l
DAA
LD reg, A

DAA applies only to the accumulator.

5. Increment memory locations ADDR and ADDR+ I (MSB in ADDR + 1).

LD HL,(ADDR)
INC HL ;16-BIT INCREMENT
LD (ADDR), HL

or

DONE:

LD HL,ADDR
INC (HL)
.JR NZ, [tONE
INC HL
INC (HL)
DEC HL
NOP

; INCREMENT LSB

;ADD CARRY TO MSB

;16-BIT INCREMENT
;TEST RESULT FOR ZERO

The second alternative leaves ADDR in HL for later use.

6. Increment register pair, setting the Zero flag if the result is O.

INC tOP

LD A, t"pl
OR rph

This sequence destroys the old contents of the accumulator and the flags. OR clears
Carry.

Decrement Instructions

1. Decrement memory location ADDR.

LD HL,ADDR
DEC (HL)

; 16-BIT DECREMENT

78 Z80 ASSEMBLY LANGUAGE SUBROUTINES

2. Decrement accumulator, setting Carry flag if a borrow is generated.

SUB 1

3. Decrement accumulator, setting Carry flag if no borrow is generated.

ADD A,OFFH

4. Decimal decrement accumulator (subtract I from A in decimal).

SUB 1
DAA

DEC cannot be used here, since it does not affect Carry.

5. Decimal decrement register (subtract I from reg in decimal).

LD A,reg
SUB 1
DAA
LD reg, A

DAA applies only to the accumulator.

6. Decrement memory locations ADDR and ADDR+ I (MSB in ADDR+ I).

LD HL, (ADDR)
DEC HL
LD (ADDR),HL

7. Decrement register pair, setting the Zero flag if the result is O.

DEC rp ; 16-BIT DECREMENT
LD A,rpl ;TEST 16-BIT RESULT FOR ZERO
OR t-ph

This sequence destroys the old contents of the accumulator and changes the other
flags. OR clears the Carry flag.

Multiplication Instructions

I. Multiply accumulator by 2.

ADD A,A

2. Multiply accumulator by 3 (using reg for temporary storage).

LD l'"eg, A
ADD A,A
ADD A,l'"eg

SAVE A
2 X A
3 X A

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 79

3. Multiply accumulator by 4.

ADD A,A
ADD A,A

;2 X A
;4 X A

We can easily extend cases I, 2, and 3 to multiplication by other small integers.

4. Multiply register by 2.

SLA reg

5. Multiply register by 4.

SLA reg
SLA reg

;MULTIPLY BY 2
;AND THEN BY 2 AGAIN

Since SLA is a 2-byte instruction, it eventually becomes faster to move the data to the
accumulator and use the I-byte instruction ADD A, A.

6. Multiply register pair HL by 2.

ADD HL,HL

7. Multiply register pair HL by 3 (using rp for temporary storage).

LD rph,H
LD t-pl, L
ADD HL,HL
ADD HL, t-p

;2 X HL
;3 X HL

Note that you cannot use EX DE,HL here, since it changes HL.

8. Multiply an index register by 2.

ADD Xy, }:y

9. Multiply memory locations ADDR and ADDR+ I (MSB in ADDR+ 1) by 2.

LD HL,ADDR
SLA (HL) ;SHIFT LSB LEFT LOGICALLY
INC HL
RL (HL) ;THEN ROTATE MSB TO PICK UP CARRY

or

LD xy,ADDR
SLA (Xy+O)
RL (xy+1)

;SHIFT LSB LEFT LOGICALLY
;THEN ROTATE MSB TO PICK UP CARRY

Note that you must rotate the more significant byte to pick up the Carry produced by
shifting the less significant byte.

80 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Division Instructions

1. Divide accumulator by 2 unsigned.

SRL A ;DIVIDE BY 2, CLEARING SIGN

2. Divide accumulator by 4 unsigned.

SRL A ;DIVIDE BY '-, CLEARING SIGN"SRL A ;THEN BY 2 AGAIN

or

RRA ;ROTATE A RIGHT TWICE
RRA
AND 00111111B ;THEN CLEAR 2 MSB~S

Since SRL is a 2-byte instruction, it eventually becomes faster to use the I-byte
instruction RRA and clear the more significant bits explicitly at the end.

3. Divide accumulator by 2 signed.

SRA A ;DIVIDE BY 2, EXTENDING SIGN

4. Divide memory locations ADDR and ADDR+ 1 (MSB in ADDR+ 1) by 2
unsigned.

LD XY,ADR
SRL (, XY+l)
RR (XY+(l)

;SHIFT MSB RIGHT LOGICALLY
;THEN ROTATE LSB RIGHT

Rotating the less significant byte picks up the Carry from the more significant byte.

5. Divide memory locations ADDR and ADDR+ 1 (MSB in ADDR+ 1) by 2
signed.

LD XY, ADR
SRA (XY+l)
RR (, XY+(l)

;SHIFT MSB RIGHT ARITHMETICALLY
;THEN ROTATE LSB RIGHT

6. Divide register pair by 2 unsigned.

SRL t-ph
RR rpl

;SHIFT MSB RIGHT LOGICALLY
;THEN ROTATE LSB RIGHT

7. Divide register pair by 2 signed.

SRA rph ;SHIFT MSB RIGHT ARITHMETICALLY
RR rpl ;THEN ROTATE LSB RIGHT

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 81

Comparison Instructions

I. Compare VALUE with accumulator bit by bit, setting each bit position that is
different.

XOR VALUE

Remember, the EXCLUSIVE OR of two bits is I if and only ifthe two bits are different.

2. Compare register with accumulator bit by bit, setting each bit position that is
different.

XOR reg

3. Compare register pairs (rp and HL). Set Carry if rp is larger (unsigned) than HL
and clear Carry otherwise.

AND A ;CLEAR CARRY
SBC HL,rp

This sequence changes HL.

;CLEAR CARRY

LD tOP, -VAL16
ADD HL,rp

or

AND A
LD top, VAL16
SBC HL, tOP

4. Compare register pair HL with 16-bit number VALI6.

;FORM HL - VAL16 BY ADDING

Carry is an inverted borrow after the first alternative and a true borrow after the
second. Both sequences change HL and rp.

5. Compare index register with 16-bit number VALI6. Clear Carry if VALI6 is
greater than index register and set Carry otherwise.

LD rp,-VAL16 ;FORM INDEX REGISTER - VAL16
ADD xy, tOP

Carry is an inverted borrow here, since we are subtracting by adding the two's
complement.

6. Compare register pair with memory locations ADDR and ADDR+ I (MSB in
ADDR+I).

AND A ;CLEAR CARRY
LD rp,(ADDR) ;SUBTRACT REGISTER PAIR
SBC HL,rp

Carry is a true borrow.

82 Z80 ASSEMBLY LANGUAGE SUBROUTINES

7. Compare index register with memory locations ADDR and ADDR+ 1 (MSB in
ADDR+l).

PUSH xy
POP HL
AND A
LD rp,(ADDR)
SBC HL,rp

;MOVE INDEX REGISTER TO HL

;CLEAR CARRY
;FORM INDEX REGISTER - OTHER OPERAND

The Z80 has no SBC xy instruction.

8. Compare stack pointer with the l6-bit number VAL16.

LD HL,O ;MOVE STAC~ POINTER TO HL
ADD HL,SP
LD rp,-VAL16
ADD HL,rp

Carry is an inverted borrow.

9. Compare stack pointer with memory locations ADDR and ADDR+ 1 (MSB in
ADDR+l).

LD HL,O
ADD HL,SP
LD t- p, (ADDR)
AND A
SBC HL,rp

Carry is a true borrow.

;MOVE STACK POINTER TO HL

;CLEAR CARRY
;FORM SP - MEMORY

Two's Complement (Negate) Instructions

1. Negate register.

SUB A ;FORM 0 - REG
SUB reg
LD reg, A

or

LD A,reg
NEG
LD reg, A

2. Negate memory location ADDR.

SUB A
LD HL,ADDR

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 83

SUB (HL)
LD (HL),A

or

LD HL,ADDR
LD A, (HL)
NEG
LD (HL),A

3. Negate register pair.

LD A,yph
CPL
LD t"ph, A
LD A,ypl
CPL
LD ypl,A
INC YP

or

LD HL,O
AND A
SBC HL,yp

;FORM 0 - (MEMORY)

; FORM - (ADDR)

; 16-BIT ONE/S COMPLEMENT

;ADD 1 FOR TWO/S COMPLEMENT

;FORM 0 - (RP)
;CLEAR CARRY

The second sequence leaves the negative in HL; it can then be moved easily to another
register pair.

4. Negate memory locations ADDR and ADDR+ 1 (MSB in ADDR+ 1).

LD HL,O ;FORM 0 - (MEMORY)
LD YP,(ADDR)
AND A
SBC HL,yp
LD (ADDR),HL

5. Nine's complement accumulator (that is, replace (A) with 99-(A)).

LD t"e9, A
LD A,99H
SUB reg

No DAA is necessary, since 99 (A) is always a valid BCD number if the accumulator
originally contained a valid BCD number.

6. Ten's complement accumulator (that is, replace (A) with lOO-(A)).

NEG
DAA

;FORM 0 - ACCUMULATOR
;THEN DECIMAL ADJUST

84 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Extend Instructions

1. Extend accumulator to a 16-bit unsigned number in a register pair.

LD
LD

rpl,A
rph,O

;a-BIT MOVE
;EXTEND a BITS TO 16 BITS

This procedure allows you to use the value in the accumulator as an index. ADD HL
or ADD xy will then add the index to the base.

2. Extend accumulator to a 16-bit signed number in a register pair.

LD rpl,A
ADD A,A
sac A.A
LD rph,A

;a-BIT MOVE
;MOVE SIGN BIT TO CARRY
;SUBTRACT SIGN BIT FROM ZERO
;EXTEND a BITS TO 16 BITS SIGNED

SBC A,A produces 00 if Carry is 0 and FFI6 if Carry is 1. It thus extends Carry
across the entire accumulator.

3. Extend memory location ADDR to a 16-bit signed number in memory locations
ADDR (LSB) and ADDR+ I (MSB).

LD HL,ADDR
LD A, (HL)
ADD A,A
sac A.A
INC HL
LD (HL), A

;FETCH NUMBER

;MOVE SIGN TO CARRY
;FORM SIGN BYTE (00 OR FF)
;STORE SIGN BYTE

4. Extend bit 0 of accumulator across entire accumulator; that is, (A) = 00 ifbit 0 =
oand FFI6 if bit 0 = 1.

RRA
sac A.A

;MOVE BIT 0 TO CARRY
;FORM 0 - BIT 0

5. Sign function. Replace the value in the accumulator by 00 if it is positive and by
FF16 if it is negative.

ADD A,A
sac A.A

;MOVE SIGN BIT TO CARRY
;FORM 0 - SIGN BIT

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 85

LOGICAL INSTRUCTIONS

This group includes logical AND, logical OR, logical EXCLUSIVE OR, logical
NOT (complement), shift, rotate, and test instructions. Also included are arithmetic
instructions (such as adding the accumulator to itself) that perform logical functions.

Logical AND Instructions

1. Clear bits of accumulator.

AND MASK ;CLEAR BITS BY MASKING

MASK has O's in the bit positions to be cleared and I's in the positions to be left
unchanged. For example:

AND 11011011B ;CLEAR BITS 2 AND 5

Remember, logically ANDing a bit with I does not affect its value. Since RES can clear
only one bit at a time, the following sequence would be needed to produce an
equivalent result:

RES 2,A
RES 5,A

;CLEAR BIT 2
;AND THEN CLEAR BIT 5

2. Bit test-set the flags as if accumulator had been logically ANDed with a register
or memory location, but do not change the accumulator.

LD reg, A
LD HL,ADDR
AND (HL)
LD A,reg

LD does not affect any flags.

;SAVE ACCUMULATOR

;PERFORM LOGICAL AND
;RESTORE ACCUMULATOR

3. Test bits of accumulator. Set the Zero flag to I if all the tested bits are 0 and to 0
otherwise.

AND MASK ;TEST BITS BY MASKING

MASK has I's in the positions to be tested and O's elsewhere. The Zero flag is set to I
if all the tested bit positions are 0, and to 0 otherwise. Since the BIT instruction can test
only one bit position at a time, AND MASK is equivalent to a sequence of BIT
instructions and conditional jumps. For example:

AND 010000010B ;TEST BITS 1 AND 6 FOR ZERO

86 Z80 ASSEMBLY LANGUAGE SUBROUTINES

DONE:

is equivalent to the sequence

BIT 6,A
dR NZ,DONE
BIT 1,A
NOP

;TEST BIT 6 FOR ZERO
;BRANCH IF IT IS NOT ZERO
;THEN TEST BIT 1 FOR ZERO

4. Logical AND immediate with flags (condition codes). Logically AND a byte of
immediate data with the Flag register, clearing those flags that are logically ANDed
with O's.

PUSH AF ;MOVE AF TO A REGISTER PAIR
POP rp
LD A, MASK ;CLEAR FLAGS
AND rpl
LD rpl,A
PUSH rp ;RESTORE AF WITH FLAGS CLEARED
POP AF

This sequence changes a register pair (Be, DE, or HL).

Logical OR Instructions

1. Set bits of accumulator.

OR MASK ;SET BITS BY MASKING

MASK has 1's in the bit positions to be set and O's elsewhere. For example:

OR 00010010B ;SET BITS 1 AND 4

Remember, logically ORing a bit with 0 does not affect its value. Since SET can set
only one bit at a time, we would need the following sequence to produce the same
result:

SET 1, A
SET 4,A

;SET BIT 1
;AND THEN SET BIT 4

2. Test a register pair for O. Set the Zero flag if both halves of a register pair are O.

LD
OR

A,rph
rpl

;TEST REGISTER PAIR FOR ZERO

The Zero flag is set if and only if both halves of register pair rp are O. The accumulator
and the other flags are also changed.

3. Logical OR immediate with flags (condition codes). Logically OR a byte of
immediate data with the flag register, setting those flags that are logically ORed with
1'so

PUSH AF
POP rp

;MOVE AF TO A REGISTER PAIR

;SET FLAGS

;RESTORE AF WITH FLAGS SET

CHAPTEi< 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 87

LD A, MASK
OR ypl
LD rpl, A
PUSH rp
POP AF

This sequence changes a register pair (BC, DE, or HL).

Logical EXCLUSIVE OR Instructions

1. Complement bits of accumulator.

XOR MASK ;COMPLEMENT BITS BY MASKING

MASK has 1's in the bit positions to be complemented and O's in the positions that are
to be left unchanged. For example:

XOR 11000000B ;COMPLEMENT BITS 6 AND 7

Remember, logically EXCLUSIVE ORing a bit with 0 leaves it unchanged.

2. Complement accumulator, setting flags.

XOR l1111111B ; INVERT AND SET FLAGS

Logically EXCLUSIVE ORing with all l's inverts all the bits. This instruction differs
from CPL only in that it affects the flags, whereas CPL does not.

3. Compare register with accumulator bit by bit, setting each bit position that is
different.

XOR reg ;BIT BY BIT COMPARISON

The EXCLUSIVE OR function is the same as a "not equal" function. Note that the
Sign flag is 1 if the two operands have different values in bit 7.

4. Add register to accumulator logically (that is, without any carries between bit
positions).

XOR reg ;LOGICAL ADDITION

The EXCLUSIVE OR function is also the same as a bit-by-bit sum with no carries.
Logical sums are often used to form checksums and error-detecting or error-correcting
codes.

Logical NOT Instructions

1. Complement accumulator, setting flags.

88 Z80 ASSEMBLY LANGUAGE SUBROUTINES

XOR 11111111B ; INVERT AND SET FLAGS

Logically EXCLUSIVE ORing with all I 's inverts all the bits. This instruction differs
from CPL only in that it affects the flags, whereas CPL does not.

2. Complement bits of accumulator.

XOR MASK ;COMPLEMENT BIT BY MASKING

MASK has 1's in the bit positions to be complemented and O's in the positions that are
to be left unchanged. For example:

XOR 01010001B ;COMPLEMENT BITS 0, 4, AND 6

;OBTAIN DATA
; COMPLEMENT
;RESTORE RESULT

;COMPLEMENT LESS SIGNIFICANT DIGIT

Remember, logically EXCLUSIVE ORing a bit with 0 leaves it unchanged.

3. Complement memory location ADDR.

LD HL,ADDR
LD A, (HL)
CPL
LD (HL), A

CPL applies only to the accumulator.

4. Complement bit 0 of a register.

INC reg

or

DEC reg

Either instruction may, of course, affect the other bits in the register. The final value of
bit 0 will surely be 0 if it was originally 1 and if it was originally O.

5. Complement bit 0 of a memory location.

LD HL,ADDR
INC (HL)

or

LD HL,ADDR
DEC (HL)

6. Complement digit of accumulator.

. Less significant digit

XOR 00001111B

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 89

. More significant digit

XOR 11110000B ;COMPLEMENT MORE SIGNIFICANT DIGIT

These procedures are useful if the accumulator contains a decimal digit in negative
logic, such as the input from a typical ten-position rotary or thumbwheel switch.

7. Complement a register pair.

LD HL,OFFFFH
AND A
SBC HL,rp

The result ends up in HL.

Shift Instructions

;SET HL TO ALL ONES
;CLEAR CARRY
;SUBTRACT REGISTER PAIR FROM ALL ONES

1. Shift accumulator left logically.

ADD A,A ;SHIFT A LEFT LOGICALLY

Adding the accumulator to itself is equivalent to a logical left shift.

2. Shift register pair HL left logically.

ADD HL,HL ;SHIFT HL LEFT LOGICALLY

3. Shift index register left logically.

ADD xy,Xy ;SHIFT IX OR IY LEFT LOGICALLY

4. Shift register pair right logically.

SRL rph ;SHIFT MSB RIGHT LOGICALLY
RR rpl ;AND THEN ROTATE LSB RIGHT

The key point here is that the less significant byte must be rotated to pick up the Carry
from the logical shifting of the more significant byte.

5. Shift register pair right arithmetically.

SRA rph ;SHIFT MSB RIGHT ARITHMETICALLY
RR rpl ;AND THEN ROTATE LSB RIGHT

The rotation of the less significant byte is the same as in the logical shift.

6. Shift memory locations ADDR and ADDR+ 1 (MSB in ADDR+ 1) left
logically.

90 Z80 ASSEMBLY LANGUAGE SUBROUTINES

;SHIFT LSB LEFT LOGICALLY

;AND THEN ROTATE MSB LEFT

;SHIFT LSB LEFT LOGICALLY
;AND THEN ROTATE MSB LEFT

To produce a 16-bit left shift, you must shift the less significant byte first and then
rotate the more significant byte.

LD HL,ADDR
SLA (HL)
INC HL
RL (HL)

or

LD xy,ADDR
SLA (Xy+O)
RL (xy+l)

7. Shift memory locations ADDR and ADDR+ 1 (MSB III ADDR+ 1) right
logically.

LD HL,ADDR+l
SRL (HL) ;SHIFT MSB RIGHT LOGICALLY
DEC HL
RR (HL) ;AND THEN ROTATE LSB RIGHT

or

LD xy,ADDR
SRL (xy+l) ;SHIFT MSB RIGHT LOGICALLY
RR (Xy+O) ;AND THEN ROTATE LSB RIGHT

8. Digit swap accumulator. That is, exchange the four least significant bits with the
four most significant bits.

RLCA
RLCA
RLCA
RLCA

;DIGIT SHIFT 4 LEFT ROTATES

or

RRCA
RRCA
RRCA
RRCA

;DIGIT SHIFT 4 RIGHT ROTATES

9. Normalize accumulator. That is, shift the accumulator left until its most signif
icant bit is 1. Do not shift at all if the accumulator contains O.

SHIFT:

DONE:

AND A
..JP M, DONE
",IR Z, DONE
ADD A,A
..JP P, SHIFT
NOP

;TEST ACCUMULATOR
;EXIT IF ALREADY NORMALIZED
;EXIT IF ZERO
; OTHERWISE, SHIFT A LEFT 1 BIT
;KEEP SHIFTING UNTIL NORMALIZED

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 91

10. Normalize register pair HL. That is, shift the l6-bit number left until its most
significant bit is 1. Do not shift the number at all if it is O.

SHIFT:

DONE:

LD A,H
OR L
..JR Z,DONE
ADD HL,HL
.JR NC, SHIFT
RR H
RR L
NOP

;IS ENTIRE NUMBER O?

;YES, DONE
;SHIFT NUMBER LEFT 1 BIT
;KEEP SHIFTING UNTIL CARRY IS 1
;THEN SHIFT BACK ONCE

ADD HL affects the Carry but not the Sign or Zero flag.

Rotate Instructions

1. Rotate register pair right.

RRC rpl
RL rpl
RR rph
RR rpl

;COPY BIT 0 FOR ROTATION
;CARRY = BIT 0
;ROTATE MSB WITH BIT 0
;THEN ROTATE LSB RIGHT

The RRC rpl instruction places bit 0 both in bit 7 and in the Carry flag; RL rpl then
restores the register but leaves the original bit 0 in the Carry.

2. Rotate register pair left.

RLC ,,"ph
RR rph
RL rpl
RL rph

;COPY BIT 15 FOR ROTATION
;CARRY = BIT 15
;ROTATE LSB WITH BIT 15
;THEN ROTATE MSB LEFT

RLC rph places bit 7 of the more significant byte both in bit 0 and in the Carry. RR rph
then restores the register but leaves the original bit 7 (bit 15 of the 16-bit register pair) in
the Carry.

3. Rotate accumulator left through Carry, setting flags.

ADC A,A ;ROTATE LEFT AND SET FLAGS

This instruction is the same as RLA, except that it affects all the flags whereas RLA
affects only the Carry.

4. Rotate register pair right through Carry.

RR ,,"ph
RR rpl

;ROTATE MSB RIGHT WITH CARRY
;THEN ROTATE LSB RIGHT WITH CARRY

92 Z80 ASSEMBLY LANGUAGE SUBROUTINES

5. Rotate register pair left through Carry.

RL
RL

rpl
rph

;ROTATE LSB LEFT WITH CARRY
;ROTATE MSB LEFT WITH CARRY

6. Rotate memory locations ADDR and ADDR+ 1(MSB in ADDR+ 1) right 1bit
position through Carry.

LD HL,ADDR+l
RR (HL) ;ROTATE MSB RIGHT WITH CARRY
DEC HL
RR (HL) ;THEN ROTATE LSB RIGHT WITH CARRY

or

LD
RR
RR

xy,ADDR
(xy+l)
(Xy+O)

;ROTATE MSB RIGHT WITH CARRY
;THEN ROTATE LSB RIGHT WITH CARRY

;ROTATE LSB LEFT WITH CARRY

;THEN ROTATE MSB LEFT WITH CARRY

7. Rotate memory locations ADDR and ADDR+ 1(MSB in ADDR+ 1) left one bit
position through Carry.

LD HL,ADDR
RL (HL)
INC HL
RL (HL)

or

LD xy,ADDR
RL (Xy+O)
RL (Xy+1)

Test Instructions

;ROTATE LSB LEFT WITH CARRY
;THEN ROTATE MSB LEFT WITH CARRY

1. Test accumulator. Set flags according to the value in the accumulator without
changing that value.

AND A

or

OR A

Both alternatives clear the Carry.

;TEST ACCUMULATOR

;TEST ACCUMULATOR

2. Test register. Set flags according to the value in a register without changing that
value.

INC reg
DEC reg

;TEST REGISTER

This sequence does not affect the Carry or the accumulator.

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTi<UCTIONS AND ADDRESSING MODES 93

3. Test memory location. Set flags according to the value in memory location
ADDR without changing that value.

LD HL,ADDR ;TEST MEMORY LOCATION ADDR
INC (HL)
DEC (HL)

This sequence does not affect the Carry or the accumulator.

4. Test register pair. Set the Zero flag according to the value in a register pair
without changing that value.

LD A,rph ;TEST REGISTER PAIR
OR rp!

This sequence changes the accumulator and the other flags.

5. Test index register. Set the Zero flag according to the value in an index register
without changing that value.

PUSH Xy
POP rp
LD A,rph
OR rp!

;MOVE INDEX REG TO REGISTER PAIR

;TEST REGISTER PAIR

This sequence changes a register pair, the accumulator, and the other flags.

6. Test a pair of memory locations. Set the Zero flag according to the contents of
memory locations ADDR and ADDR+ 1.

LD HL,(ADDR) ;TEST A MEMORY WORD
LD A,H
OR L

This sequence changes HL, the accumulator, and the other flags.

7. Test bits of accumulator. Set the Zero flag if all the tested bits are O's and clear the
Zero flag otherwise.

AND MASK ;TEST BITS BY MASKING

MASK has 1's in the bit positions to be tested and O's elsewhere. The Zero flag is set
to 1 if all the tested bits are O's and to 0 otherwise. For example:

AND 10000001 B ;TEST BITS 0 AND 7

The Zero flag is set to 1 if bits 0 and 7 of the accumulator are both zero, and to 0
otherwise. The BIT instruction, on the other hand, can only handle one bit at a time;
for example:

BIT 7,A ;TEST BIT 7

94 Z80 ASSEMBLY LANGUAGE SUBROUTINES

To duplicate the AND instruction, we would need the sequence

DONE:

BIT 7,A
..JR NZ,DONE
BIT O,A
NOP

;TEST BIT 7
;EXIT IF IT IS 1
;TEST BIT 0

8. Compare register with accumulator bit by bit. Set each bit position that is
different to 1.

XOR t"eg ;BIT-BY-BIT COMPARISON

The EXCLUSIVE OR function is the same as a "not equal" function.

9. Bit test. Set flags as if the accumulator had been logically ANDed with a memory
location, but do not change the accumulator.

LD t"eg,A
LD HL,ADDR
AND (HL)
LD A,reg

;SAVE ACCUMULATOR

;PERFORM LOGICAL AND
;RESTORE ACCUMULATOR

DATA TRANSFER INSTRUCTIONS

In this group, we consider load, store, move, exchange, input, output, clear, and set
instructions. We also include arithmetic instructions (such as subtracting the accumu
lator from itself) that move a specific value or the contents of another register to the
accumulator or other destination without changing any data.

Load Instructions

1. Load register direct.

LD A, (ADDR)
LD reg, A

or

LD HL,ADDR
LD reg, (HL)

The first alternative uses the accumulator, while the second alternative uses register
pair HL.

2. Load register indirect.

. From address in HL

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 95

LD reg, <HL)

. From address in BC or DE

LD A,(rp)
LD reg, A

Note that only the accumulator can be loaded indirectly via BC or DE.

From address in an index register

LD reg, (xy+O)

3. Load flag register with the 8-bit number VALUE.

LD rpl,VALUE ;PUT VALUE IN LSB OF REGISTER PAIR
PUSH rp ;MOVE TO FLAGS THROUGH STACK
POP AF

The limitation of pushing and popping register pairs causes some unnecessary
operations.

4. Load interrupt vector register with the 8-bit number VALUE.

LD A, VALUE
LD I,A

5. Load refresh register with the 8-bit number VALUE.

LD A, VALUE
LD R,A

6. Load flag register direct from memory location ADDR.

LD HL,(ADDR)
PUSH HL
POP AF

;LOAD L FROM ADDR
;HL TO STACK, L ON TOP
;HL TO AF WITH L TO FLAGS

This procedure allows a user to initialize the flag register for debugging or testing
purposes. Note that it changes the accumulator and the less significant byte of a
register pair.

7. Load interrupt vector register direct from memory location ADDR.

LD A, (ADDR)
LD I,A

8. Load refresh register direct from memory location ADDR.

LD A, (ADDR)
LD R,A

96 Z80 ASSEMBLY LANGUAGE SUBROUTINES

9. Load register pair HL indirect from address in HL.

LD A, (HL)
INC HL
LD H,(HL)
LD L,A

;LOAD LSB

;LOAD MSB

10. Load register pair (BC or DE) indirect from address in HL.

LD rpl,(HL)
INC HL
LD rph,(HL)
DEC HL

;LOAD LSB

;LOAD MSB
;RESTORE HL TO ORIGINAL VALUE

11. Load alternate processor status (AF') from stack.

POP AF
EX AF ,AF'"

12. Load memory locations PTR and PTR+ 1 (MSB in PTR+ 1) with ADDR.

LD HL,ADDR ;GET INDIRECT ADDRESS
LD (PTR),HL ;STORE INDIRECT ADDRESS IN MEMORY

Store Instructions

1. Store register direct.
LD A,reg
LD (ADDR),A

or

LD HL,ADDR
LD (HL),reg

The first alternative uses the accumulator, whereas the second uses register pair HL.

2. Store register indirect.

. At address in HL
LD (HL),reg

. At address in DE or BC

LD A,reg
LD (rp), A

Only the accumulator can be stored at the address in BC or DE.

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 97

. At address in an index register

LD (xy+O),reg

3. Store flag register direct.

PUSH AF ;F TO TOP OF STACK
POP HL ;F TO L
LD (ADDR),HL ;F TO ADDR, DESTROY ADDR+l

or

PUSH AF ;F TO TOP OF STACK
POP HL ;F TO L
LD A,L ;F TO A
STA ADDR ;F TO ADDR

4. Store interrupt vector register direct.

LD A,l
LD (ADDR) I A

5. Store refresh register direct.

LD A,R
LD (ADDRl I A

6. Store register pair (BC or DE) indirect at address in HL.

LD (HL),rpl ;STORE LSe
INC HL
LD (HL),rph ;STORE MSB
DEC HL ;RETURN HL TO ORIGINAL VALUE

The register pair is stored in memory in the usual upside-down fashion.

7. Store alternate processor status (AP') in stack.

EX AF, AF'"
PUSH AF

Move Instructions

1. Transfer accumulator to flag register.

LD t"pl,A
PUSH top
POP AF

The flag register is the less significant byte of register pair AF. This sequence also
changes the accumulator and the less significant byte ofa register pair (Le., C, E, or L).

98 Z80 ASSEMBLY LANGUAGE SUBROUTINES

2. Transfer flag register to accumulator.

PUSH AF
POP tOP
MOV A,ypl

This sequence changes register pair rp.

3. Move register pair 1 to register pair 2.

LD rp21,rpl1
LD rp2h,rplh

This sequence transfers the contents of register pair rp 1 to rp2 without changing rp 1.
Remember, EX DE,HL exchanges register pairs DE and HL specifically.

4. Move stack pointer to HL.

LD HL,O
ADD HL,SP

5. Move stack pointer to an index register.

LD Xy,O
ADD Xy,SP

6. Move index register to register pair.

PUSH Xy
POP tOP

7. Move register pair to index register.

PUSH rp
POP xy

8. Move index register IX to index register IY.

PUSH IX
POP IV

9. Move index register IY to index register IX.

PUSH IV
POP IX

10. Move HL to program counter.

JP (HL)

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 99

11. Move index register to program counter.

JP (xy)

12. Move memory locations ADDR and ADDR+ 1 (MSB in ADDR+ 1) to the
program counter (an indirect jump).

LD HL,(ADDR)
JP (HL)

13. Move multiple (fill). Place the accumulator in successive memory locations
starting at the address in register pair HL. The number of bytes to be filled (one or
more) is in register B.

FILBYT: LD (HL), A
INC HL
D.JNZ FILBYT

;FILL A MEMORY LOCATION
;POINT TO NEXT LOCATION
;COUNT BYTES

This routine cart initialize an array or buffer. If more than 256 bytes are to be filled,
the repeated block move instructions become handy. The approach is to fill the first
byte from the accumulator and then use a repeated block move to fill the succeeding
bytes. The destination pointer is always one byte ahead of the source pointer, so the
data being moved is always the same.

LD
LD
LD
INC
DEC
LDIR

(HL), A
D,H
E,L
DE
BC

;FILL THE FIRST BYTE MANUALLY
; DESTINATION POINTER IS 1 BYTE UP

;COUNT DOWN 1 BYTE
;FILL THE REST AUTOMATICALLY

Exchange Instructions

1. Exchange registers using the accumulator.

LD A,regl
LD regl,reg2
LD reg2,A

2. Exchange register pairs.

. DE with HL

EX DE,HL

. Be with HL

PUSH BC
EX HL,(SP)
POP BC

;BC TO TOP OF STACK
;BC TO HL, HL TO TOP OF STACK
;HL TO BC

100 Z80 ASSEMBLY LANGUAGE SUBROUTINES

EX HL,(SP) exchanges HL with the top of the stack.

. general, rpl with rp2

PUSH rpl
PUSH rp2
POP rpl
POP rp2

;PUT RP1, RP2 IN STACK

;EXCHANGE BY POPPING IN WRONG ORDER

3. Exchange stack pointer with HL.

EX DE,HL ;HL TO DE
LD HL,O ;SP TO HL
ADD HL,SP
EX DE,HL ;SP TO DE, RESTORE HL
LD SP,HL ;HL TO SP
EX DE,HL ;SP TO HL

This procedure can be used to differentiate between the user stack and the operating
system or monitor stack.

4. Exchange index register with register pair.

PUSH xy
PUSH tOP
POP Xy
F'0P rp

5. Exchange index registers.

PUSH IX
PUSH IY
POP IX
POP IY

Clear Instructions

1. Clear the accumulator.

SUB A

or

XOR A

or

LD A,O

;SAVE INDEX REG, REG PAIR IN STACK

;EXCHANGE BY POPPING IN WRONG ORDER

;SAVE BOTH INDEX REGISTERS IN STACK

;EXCHANGE BY POPPING IN WRONG ORDER

The third alternative executes more slowly and occupies more memory than the
other two, but does not affect the flags.

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 101

2. Clear a register.

LD reg,O

3. Clear memory location ADDR.

SUB A
LD (ADDR), A

or

LD HL,ADDR
LD (HL), 0

The second alternative executes more slowly than the first, but does not affect the
accumulator or the flags. Of course, it does use register pair HL.

4. Clear a register pair.

LD rp,O

5. Clear memory locations ADDR and ADDR+ 1.

LD HL,O
LD (ADDR),HL

HL is faster to use here than DE or BC.

6. Clear Carry flag.

AND A

or

OR A

Any other logical instruction (except CPL) will also clear the Carry, but these two
are particularly useful because they do not change the accumulator. Remember,
ANDing or ORing a bit with itself does not affect its value. To clear Carry without
affecting any other flags, use the sequence

SCF
CCF

7. Clear bits of accumulator.

AND MASK

;FIRST SET CARRY FLAG
;THEN CLEAR CARRY BY COMPLEMENTING

;CLEAR BITS BY MASKING

MASK has O's in the bit positions to be cleared and 1's in the positions that are to be
left unchanged. For example:

AND 10111110B ;CLEAR BITS 0 AND 6

RES can clear only one bit at a time.

102 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Set Instructions

I. Set the accumulator to FF16 (all I's in binary).

LD A,OFFH

or

SUB A
DEC A

2. Set register to FF16.

LD reg,OFFH

3. Set memory location ADDR to FF16.

LD A,OFFH
LD (ADDR), A

or

LD HL,ADDR
LD (HL), OFFH

4. Set bits of accumulator.

OR MASK ;SET BITS BY MASKING

MASK has I's in the bit positions to be set and O's elsewhere. For example:

OR 10110000B ;SET BITS 4, 5, AND 7

The SET instruction can set only one bit at a time.

BRANCH (JUMP) INSTRUCTIONS

Unconditional Branch Instructions

1. Jump indirect.

. To address in HL

..JP (HL)

. To address at the top of the stack

RET

Note that RET is just an ordinary indirect jump that obtains its destination from the

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS Af\JD ADDRESSNG MODES 103

top of the stack. RET can be used for purposes other than returning from a subroutine.

· To address in DE

EX DE,HL
,JP (HL)

· To address in Be
LD H,B
LD L,C
JP (HL)

or

PUSH BC
RET

The second alternative is much slower than the first (21 cycles as compared to 12
cycles), but does not change HL.

· To address in an index register

JP (Xy)

· To address in memory locations ADDR and ADDR+ 1

LD
dP

HL,ADDR
(HL)

;FETCH INDIRECT ADDRESS
;AND BRANCH TO IT

2. Jump indexed, assuming that the base of the address table is in register pair HL
and the index is in the accumulator.

ADD A,A
LD E,A
LD D,O
ADD HL,DE
LD E,(HL)
INC HL
LD D,(HL)
EX DE,HL
...IP (HL)

;DOUBLE INDEX FOR 2-BYTE ENTRIES
;EXTEND INDEX TO 16 BITS

;CALCULATE ADDRESS OF ELEMENT
; FETCH ELEMENT FROM ADDRESS TABLE

; AND .JUMP TO IT

;ADDRESS ENTRY (,I

;ADDRESS ENTRY 1
;ADDRESS ENTRY 2

We have assumed that the address table (jump table) consists of as many as 128 2-byte
entries, stored in the usual Z80 format with the less significant byte at the lowel
address. A typical table would be

dTAB: DW ROUTO
DW ROUT1
DW ROUT2

3. Jump and link; that is, transfer control to address DEST, saving the current
program counter in register pair HL.

104 Z80 ASSEMBLY LANGUAGE SUBROUTINES

HERE:
LD
JP

HL,HERE
DEST

;LOAD HAND L WITH LINK
;TRANSFER CONTROL

This procedure can provide a subroutine capability that does not use the stack. The
subroutine can return control by adjusting the link and executing lP (HL). For
example, to return control to the instruction immediately following lP DEST, the
subroutine would have to add 3 to HL (since lP DEST occupies 3 bytes). Of course,
the link could also be changed to HERE+3.

Conditional Branch Instructions

1. Branch if O.

· Branch if accumulator contains 0

AND A
JR Z,DEST

· Branch if a register contains 0

INC t-eg
DEC reg
,JR Z, DEST

;TEST ACCUMULATOR

;TEST REGISTER

· Branch if memory location ADDR contains 0

or

LD HL,ADDR
INC (HL)
DEC (HL.)
,JR Z, DEST

LD A, (ADDR)
AND A
JR Z,DEST

;TEST MEMORY LOCATION

;TEST MEMORY LOCATION

· Branch if a register pair contains 0

LD
OR
JR

A,rph
rpl
Z,DEST

;TEST REGISTER PAIR

· Branch if an index register contains 0

PUSH xy
POP rp
LD A,rph
OR ypl
JR Z,DEST

;MOVE INDEX REGISTER TO REGISTER PAIR

;TEST REGISTER PAIR

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 105

· Branch if memory locations ADDR and ADDR+ 1 both contain 0

LD
LD
OR
dR

HL,(ADDR)
A,H
L
Z,DEST

;TEST A 16-BIT NUMBER IN MEMORY

· Branch if a bit of a register is 0

BIT N,reg
dR Z,DEST

;TEST BIT N OF REGISTER

Special cases are

· Branch if bit 7 of the accumulator is 0

AND A
dP P,DEST

or

RLA
dR NC,DEST

;TEST BIT 7 OF ACCUMULATOR

;MOVE BIT 7 TO CARRY

The second alternative allows relative jumps, but it also changes the accumulator.

· Branch if bit 6 of the accumulator is 0

ADD A,A ;SET SIGN FROM BIT 6
dP P,DEST ;THEN TEST SIGN FLAG

· Branch if bit 0 of the accumulator is 0

RRA
..JR NC, DEST

;MOVE BIT 0 TO CARRY
;AND TEST CARRY

;TEST BIT N OF MEMORY LOCATION ADDR

· Branch if a bit of a memory location is 0

LD HL,ADDR
BIT N,(HL)
dR Z,DEST

Branch if interrupts are disabled (that is, if interrupt flip-flop IFF2 is 0)

LD A,I ;MOVE IFF2 TO P/V FLAG
..JP PO, DEST

The instruction LD A,I and LD A,R both move interrupt enable flip-flop IFF2 to
the Parity/Overflow flag. This sequence can be used to save the current interrupt
status before executing a routine that must run with interrupts disabled. That status
can then be restored afterward.

2. Branch if not O.

· Branch if accumulator does not contain 0

AND A
..JR NZ,DEST

;TEST ACCUMULATOR

106 Z80 ASSEMBLY LL\~~CUAGE SU8ROUTINES

· Branch if a register does not contain 0

;TEST REGISTERINC reg
DEC reg
.JR NZ,DEST

· Branch if memory location ADDR does not contain 0

LD HL.ADDR
INC (HL)
DEC (HL)
,JR NZ,DEST

or

LD A. (ADDR)
AND A
.JR NZ,DEST

;TEST MEMORY LOCATION

;TEST MEMORY LOCATION

Branch if register pair doe~·: not contain 0

lD
OR
dR

A,rph
rpi
NZ,DEST

;TEST REGISTER PAIR

· Branch if index register does not contain 0

PUSH Xy
POP rp
LD A,rph
OR rpi
,JR NZ, DEST

;TRANSFER INDEX REGISTER TO REG PAIR

;TEST REGISTER PAIR

· Branch if memory locations ADDR and ADDR+ I do not both contain 0

LD HL,(ADDR) ;TEST 16-BIT NUMBER IN MEMORY
LD A,H
OR L
dR NZ,DEST

· Branch if a bit of a register is I

BIT N,reg
..JR NZ, DEST

;TEST BIT N OF REGISTER

;MOVE BIT 7 TO CARRY

AND A
dP M,DEST

or

RLA
..JR C,DEST

Special cases are

. Branch if bit 7 of the accumulator is I

;TEST BIT 7 OF ACCUMULATOR

The second alternative allows relative jumps, but it also changes the accumulator.

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 107

· Branch if bit 6 of the accumulator is I

ADD A,A
,JP M, DEST

;SET SIGN FROM BIT 6
;THEN TEST SIGN FLAG

· Branch if bit 0 of the accumulator is 1

RRA
,JR C, DEST

;MOVE BIT 0 TO CARRY
;THEN TEST CARRY

;TEST BIT N OF MEMORY LOCATION ADDR

· Branch if a bit of a memory location is 1

LD HL,ADDR
BIT N,(HL)
dR NZ,DEST

· Branch if interrupts are enabled (that is, if interrupt flip-flop IFF2 is 1)

LD A,I
,JP PE, DEST

;MOVE IFF2 TO P/V FLAG

The instructions LD A,I and LD A,R both move interrupt enable flip-flop IFF2 to
the ParityIOverflow flag. This sequence can be used to save the current interrupt
status before executing a routine that must run with interrupts disabled. That status
can be restored afterward.

3. Branch if Equal.

· Branch if (A) = VALUE

CP
dR

VALUE
Z,DEST

;COMPARE BY SUBTRACTING

The following special cases apply to any register or to a memory location addressed
using HL or through indexing.

· Branch if (reg) = 1

DEC reg
dR Z,DEST

;CHECK BY DECREMENTING
;AND TESTING RESULT FOR ZERO

This procedure can be applied to any primary register, to the memory location
addressed through HL, or to memory locations addressed via indexing.

· Branch if (reg) = FF 16

INC reg
.JR Z, DEST

;CHECK BY INCREMENTING
;AND TESTING RESULT FOR ZERO

This procedure can be applied to any primary register, to the memory location
addressed through HL, or to memory locations addressed via indexing.

· Branch if (A) (reg)

CP t-eg
dR Z,DEST

;COMPARE BY SUBTRACTING

108 Z80 ASSEMBLY LANGUAGE SUBROUTINES

· Branch if (A) = (ADDR)

LD HL,ADDR
CP (HL)
,JR Z, DEST

· Branch if (rp) = VAL16

LD HL,VAL16
AND A
SBC HL,rp
,JR Z,DEST

;COMPARE BY SUBTRACTING

;CLEAR CARRY

;CLEAR CARRY

Carry must be cleared, since the Z80 lacks a 16-bit subtract instruction without Carry.
Note that the two's complement ofVALI6 cannot be added using ADD HL, since that
instruction does not affect the Zero flag.

Branch if (HL) = (rp)

AND A
SBC HL,rp
,JR Z,DEST

Note: Do not use either of the next two sequences to test for stack overflow or under
flow, since intervening operations could change the stack pointer by more than I.

· Branch if (SP) VALI6

LD HL,VAL16
AND A
SBC HL,SP
,JR Z,DEST

· Branch if (SP) = (HL)

AND A
SBC HL,SP
,JR Z,DEST

· Branch if (xy) = VAL16

;CLEAR CARRY

;CLEAR CARRY

PUSH
POP
LD
AND
SBC
JR

xy
rp
HL,VAL16
A
HL,SP
Z,DEST

;MOVE INDEX REGISTER TO REGISTER PAIR

;THEN COMPARE REGISTER PAIR, VAL16
;CLEAR CARRY

;COMPARE BY SUBTRACTING

ADD xy cannot be used to add the two's complement of VALI6, since ADD xy does
not affect the Zero flag.

4. Branch if Not Equal.

· Branch if (A)::j::. VALUE

CP VALUE
.,JR NZ, DEST

;CHECK BY DECREMENTING
;AND TESTING RESULT FOR ZERO

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 109

The following special cases apply to any register or to a memory location addressed
using HL or through indexing.

. Branch if (reg) =1= 1

DEC reg
JR NZ,DEST

· Branch if (reg) =1= FF16

INC reg
JR NZ,DEST

· Branch if (A) =1= (reg)

CP reg
JR NZ,DEST

· Branch if (A) =1= (ADDR)

LD HL,ADDR
C:P (HL)
.JR NZ, DEST

· Branch if (rp) =1= VALI6

LD HL,VAL16
AND A
SBC HL,rp
.JR NZ, DEST

· Branch if (HL) =1= (rp)

AND A
SBC HL, tOP
,JR NZ, DEST

;CHECK BY INCREMENTING
;AND TESTING RESULT FOR ZERO

;COMPARE BY SUBTRACTING

;COMPARE BY SUBTRACTING

;CLEAR CARRY

;CLEAR CARRY

;CLEAR CARRY

Note: You should not use either of the next two sequences to test for stack overflow
or underflow, since intervening operations could change the stack pointer by more
than I.

· Branch if (SP) =1= VAL16

LD HL,VAL16
AND A
SBC HL,SP
JR NZ,DEST

· Branch if (SP) =1= (HL)

AND A
SBC HL,SP
JR NZ,DEST

· Branch if (xy) =1= VALI6

PUSH xy
POP rp

;CLEAR CARRY

;MOVE INDEX REGISTER TO REGISTER PAIR

110 Z80 ASSEMBLY LANGUAGE SUBROUTINES

LD HL,VAL16
AND A
SBC HL, tOP
....R NZ,DEST

;THEN COMPARE REGISTER PAIR AND VAL16
;CLEAR CARRY

ADD xy cannot be used to add the two's complement of VAL16, since ADD xy does
not affect the Zero flag.

5. Branch if Positive.

· Branch if contents of accumulator are positive

AND A
...IP P, DE::;T

;TEST ACCUMULATOR

· Branch if contents of a register are positive

INC reg
DEC reg
...IP P,DEST

;TEST REGISTER

· Branch if contents of memory location ADDR are positive

or

LD HL,ADDR
INC (HL)
DEC (HL)
....P P,DEST

;TEST MEMORY LOCATION

;TEST MEMORY LOCATIONLD A, (ADDR)
AND A
....P P,DEST

· Branch if contents of a register pair are positive

INC rph
DEC rph
....P P,DEST

;TEST MORE SIGNIFICANT BYTE ONLY

· Branch if contents of index register are positive

PUSH xy
POP AF
AND A
....P P,DEST

;TRANSFER INDEX REGISTER TO AF

;TEST MORE SIGNIFICANT BYTE ONLY

· Branch if l6-bit number in memory locations ADDR and ADDR+1 (MSB in
ADDR+1) is positive

LD A, (ADDR+U
AND A
....P P,DEST

;TEST MORE SIGNIFICANT BYTE ONLY

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 111

or

LD HL,ADDR+l
BIT 7,(HL)
,JR Z,DEST

;TEST SIGN BIT OF MSB

;TEST ACCUMULATOR

;TEST PRIMARY REGISTER

6. Branch if Negative.

· Branch if contents of accumulator are negative

AND A
.JP M, DE::n

· Branch if contents of a register are negative

INC reg
DEC reg
,JP M, DEST

. Branch if contents of memory location ADDR are negative

LD HL,ADDR
INC (HL)
DEC (HL)
,JP M,DEST

or

LD A, (ADDR)
AND A
,JP M,DEST

;TEST MEMORY LOCATION

;TEST MEMORY LOCATION

;TEST MORE SIGNIFICANT BYTE ONLY

· Branch if contents of a register pair are negative

INC l'-ph
DEC rph
,JP M,DEST

. Branch if contents of an index register are negative

PUSH Xy
POP AF
AND A
,JP M,DEST

;MOVE INDEX REGISTER TO AF

;TEST MORE SIGNIFICANT BYTE ONLY

or

. Branch if 16-bit number in memory locations ADDR and ADDR+ 1 (MSB in
ADDR+ I) is negative

LD A, (ADDR+l) ;TEST MORE SIGNIFICANT BYTE ONLY
AND A
JP M,DEST

LD HL,ADDR+l
BIT 7, (HL)
..JR NZ, DEST

;TEST SIGN BIT OF MSB

112 Z80 ASSEMBLY LANGUAGE SUBROUTINES

7. Signed Branches.

These sequences must allow for two's complement overflow. After a comparison, the
setting of the Parity IOverflow flag indicates that overflow occurred. The branches are
lP PE (Branch on Overflow) and lP PO (Branch on No Overflow). The idea then is to
force a branch if the specified condition holds and overflow did not occur (a true
positive), or if the condition does not hold but overflow did occur (a false negative).
The operand in the initial comparison (indicated as oper) could be a data byte, a
register, (HL), or an indexed address.

. Branch if accumulator is greater than other operand (signed)

CHRVS:
DONE:

CP oper-
..JP PE. CHRVS
....P M.DONE
....R NZ.DEST
..JR DONE
....P M.DONE
NOP

;PERFORM COMPARISON
;BRANCH IF OVERFLOW OCCURRED
;NO OVERFLOW - NO BRANCH ON NEGATIVE

BRANCH IF RESULT NON-ZERO POSITIVE

;BRANCH IF NEGATIVE BUT OVERFLOW

This sequence forces a branch if the result is greater than 0 and overflow did not
occur, or if the result is less than 0 but overflow did occur.

. Branch if accumulator is greater than or equal to other operand (signed)

CP oper ;PERFORM COMPARISON
....P PE.CHRVS ;BRANCH IF OVERFLOW OCCURRED
....P P.DEST ;BRANCH IF NO OVERFLOW. POSITIVE
..JR DONE

CHRVS:P M.DEST ;BRANCH IF OVERFLOW. NEGATIVE
DONE: NOP

This sequence forces a branch if the result is greater than or equal to 0 and overflow
did not occur, or if the result is less than 0 but overflow did occur.

. Branch if accumulator is less than other operand (signed)

CHRVS:
DONE:

CP
I..IP
,JP
..JR
I..IP
NOP

oper
PE.CHRVS
M.DEST
DONE
P.DEST

;PERFORM COMPARISON
;BRANCH IF OVERFLOW OCCURRED
;BRANCH IF NO OVERFLOW. NEGATIVE

;BRANCH IF OVERFLOW. POSITIVE

This sequence forces a branch if the result is less than 0 and overflow did not occur,
or if the result is greater than or equal to 0 and overflow did occur.

. Branch if accumulator is less than or equal to other operand (signed)

CHRVS:

CP
....P
.JP
....R
,JR
JP

opet"
PE.CHRVS
M.DEST
Z.DEST
DONE
M.DONE

;PERFORM COMPARISON
;BRANCH IF OVERFLOW OCCURRED
;BRANCH IF NO OVERFLOW. NEGATIVE
;BRANCH IF NO OVERFLOW, ZERO

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSI NG MODES 113

DONE:
,JR NZ,DEST
NOP

;BRANCH IF OVERFLOW, POSITIVE

This sequence forces a branch if the result is less than or equal to 0 and overflow did
not occur, or if the result is greater than 0 and overflow did occur.

8. Branch if Higher (Unsigned).

Branch if the operands being compared are not equal and the comparison does not
require a borrow. The special problem here is avoiding a branch when the operands are
equal.

· Branch if (A) > VALUE (unsigned)

DONE:

CP VALUE
,JR C,DONE
,JR NZ, DEST
NOP

;COMPARE BY SUBTRACTING
;NO BRANCH IF BORROW NEEDED
;BRANCH IF NO BORROW, NOT EQUAL

Comparing equal numbers clears Carry. An alternative approach is

CP
,JR

VALUE+l
NC,DEST

;COMPARE BY SUBTRACTING VALUE+l
;BRANCH IF NO BORROW NEEDED

· Branch if (A) > (reg) (unsigned)

DONE:

CP reg
,JR C,DONE
..JR NZ, DEST
NOP

;COMPARE BY SUBTRACTING
;NO BRANCH IF BORROW NEEDED
;BRANCH IF NO BORROW, NOT EQUAL

or

LD
LD
CP
.JR

t-egl, A
A,reg
reg!
NC,DEST

;FORM REG - A

;BRANCH IF BORROW NEEDED

or

INC t-eg
CP reg
,JR NC,DEST

;FORM A - REG - 1

;BRANCH IF NO BORROW NEEDED

;COMPARE BY SUBTRACTING
;NO BRANCH IF BORROW NEEDED
;BRANCH IF NO BORROW, NOT EQUAL

DONE:

In the third alternative, we could replace INC reg with DEC A, thus changing the
accumulator instead of the register.

· Branch if (A) > (ADDR) (unsigned)

LD HL,ADDR
CP (HL)
..JR C, DONE
,JR NZ,DEST
NOP

or

114 Z80 ASSEMBLY LANGUAGE SUBROUTINES

lD reg, A ;FORM (ADDR) - A
lD A, (ADDR)
CP reg
JR C,DEST ;BRANCH IF BORROW NEEDED

· Branch if (HL) > (rp) (unsigned)

SCF
sec Hl, tOP
.JR NC,DEST

;SET CARRY FLAG

;BRANCH lF NO BORROW NEEDED

· Branch if (HL) > VALl6 (unsigned)

lD rpr-VAl16-1 ;FORM HL - VAl16 - 1
ADD Hlrrp
.JR CrDEST ;BRANCH IF NO BORROW NEEDED

Carry is an inverted borrow here, since we are subtracting by adding the two's
complement.

· Branch if (SP) > (HL) (unsigned)

AND A
SBC Hl,SP
,JR C, DEST

;CLEAR CARRY FLAG

· Branch if (SP) > VALl6 (unsigned)

lD HL,-VAL16-1
ADD Hl,SP
.JR C,DEST

;FORM SP - VAL16 - 1

;BRANCH IF NO BORROW GENERATED

· Branch if (xy) > VALl6 (unsigned)

lD t-p,-VAL16-1
ADD HY, tOP
,JR C,DEST

;FORM XY - VAl16 - 1

;BRANCH IF NO BORROW GENERATED

· Branch if (xy) > (HL) (unsigned)

PUSH Xy
POP rp
AND A
SBC Hl, tOP
.JR C,DEST

;MOVE INDEX REGISTER TO REGISTER PAIR

;CLEAR CARRY FLAG

9. Branch if Not Higher (Unsigned).

Branch if the operands being compared are equal or the comparison requires a
borrow. The special problem here is forcing a branch if the operands are equal.

· Branch if (A) :::; VALUE (unsigned)

CP VALUE ;COMPARE BY SUBTRACTING
.JR C,DEST ;BRANCH IF BORROW NEEDED
.JR Z,DEST OR IF EQUAL

or

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 115

CP VALUE+1
\.IR C, DEST

;COMPARE BY SUBTRACTING VALUE+1
;BRANCH IF BORROW NEEDED

or

or

· Branch if (A) :::; (reg) (unsigned)

CP reg ; COMPARE BY SUBTRACTING
dR C,DEST ; BRANCH IF BORROW NEEDED
dR Z,DEST OR IF EQUAL

LD t-eg1, A ;FORM REG - A
LD A,reg
CP reg1
\.IR NC,DEST ; BRANCH IF NO BORROW NEEDED

INC t-eg ; FORM A - REG - 1
CP reg
\.IR C,DEST ; BRANCH IF BORROW NEEDED

;COMPARE BY SUBTRACTING
;BRANCH IF BORROW NEEDED

OR IF EQUAL

In the third alternative, we could replace INC reg with DEC A, thus changing the
accumulator instead of the register.

· Branch if (A) :::; (ADDR) (unsigned)

LD HL,ADDR
CP (HL)
\.IR C,DEST
\.IR Z, DEST

or

LD t-eg, A
LD (ADDR), A
CP t-eg
dR NC,DEST

;FORM (ADDR) - A

;BRANCH IF NO BORROW NEEDED

· Branch if (HL):::; (rp) (unsigned)

SCF
SBC HL,rp
dR C,DEST

;SET CARRY FLAG
;FORM HL - RP - 1
;BRANCH IF BORROW NEEDED

;FORM HL - VAL16 - 1
;BRANCH IF BORROW NEEDED

· Branch if (HL) ::; VAL16 (unsigned)

LD rp,-VAL16-1
ADD HL, tOP
~IR NC, DEST

· Branch if (SP) ::; (HL) (unsigned)

AND A
SBC HL,SP
\.IR NC, DEST

;CLEAR CARRY
;FORM HL - SP
;BRANCH IF NO BORROW NEEDED

116 Z80 ASSEMBLY LANGUAGE SUBROUTINES

· Branch if (SP) :::; VAL16 (unsigned)

LD HL,-VAL16-1 ;FORM SP - VAL16 - 1
ADD HL,SP
JR NC,DEST ;BRANCH IF BORROW NEEDED

· Branch if (xy) :::; VAL16 (unsigned)

LD rp,-VAL16-1 ;FORM XY - VAL16 - 1
ADD }:y,rp
JR NC,DEST ;BRANCH IF BORROW NEEDED

· Branch if (xy) :::; (HL) (unsigned)

PUSH Xy
POP rp
AND A
SBC HL, t-P
,JR NC, DEST

;MOVE INDEX REGISTER TO REGISTER PAIR

;CLEAR CARRY
;FORM HL - XY
;BRANCH IF NO BORROW NEEDED

10. Branch if Lower (Unsigned). Branch if the unsigned comparison requires a
borrow.

· Branch if (A) < VALUE (unsigned)

CP VALUE
JR C,DEST

;COMPARE BY SUBTRACTING
;BRANCH IF BORROW NEEDED

· Branch if (A) < (reg) (unsigned)

CP reg
,JR C,DEST

;COMPARE BY SUBTRACTING
;BRANCH IF BORROW NEEDED

;COMPARE BY SUBTRACTING

· Branch if (A) < (ADDR) (unsigned)

LD HL,ADDR
CP (HL)
JR C,DEST

· Branch if (HL) < (rp) (unsigned)

AND A
SBC HL,rp
JR C,DEST

;FORM HL - RP

;BRANCH IF BORROW NEEDED

· Branch if (HL) < VAL16 (unsigned)

LD rp,-VAL16 ;FORM HL - VAL16
ADD HL,rp
JR NC,DEST ;BRANCH IF BORROW NEEDED

· Branch if (SP) < (HL) (unsigned)

SCF ; FORM HL - SP-l
SBC HL,SP
JR NC,DEST ;BRANCH IF NO BORROW NEEDED

CHAPTER2 IMPLEMENTINGADDITIONALINSTRUCTIONSANDADDRESSINGMODES 117

· Branch if (SP) < VALI6 (unsigned)

LD HL,-VAL16 ;FORM SP - VAL16
ADD HL,SP
JR NC,DEST ;BRANCH IF NO BORROW NEEDED

· Branch if (xy) < VALI6 (unsigned)

LD rp,-VAL16
ADD >:y, tOP
JR NC,DEST

;FORM XY - VAL16

;BRANCH IF NO BORROW NEEDED

· Branch if (xy) < (HL) (unsigned)

PUSH Xy ; MOVE INDEX REGISTER TO REGISTER PAIR
POP rp
SCF ; FORM HL - XY-l
SBC HL,t"p
JR NC,DEST ; BRANCH IF NO BORROW NEEDED

11. Branch if Not Lower (Unsigned). Branch if the unsigned comparison does not
require a borrow.

· Branch if (A) 2: VALUE (unsigned)

CP VALUE ;COMPARE BY SUBTRACTING
JR NC,DEST ;BRANCH IF NO BORROW NEEDED

· Branch if (A) ;::::: (reg) (unsigned)

CP reg
,JR NC, DEST

;COMPARE BY SUBTRACTING
;BRANCH IF NO BORROW NEEDED

;COMPARE BY SUBTRACTING
;BRANCH IF NO BORROW NEEDED

· Branch if (A) ;::::: (ADDR) (unsigned)

LD HL,ADDR
CP (HL)
JR NC,DEST

· Branch if (HL);::::: (rp) (unsigned)

AND A ;FORM HL - RP
SBC HL, tOP
JR NC,DEST ;BRANCH IF NO BORROW NEEDED

· Branch if (HL);::::: VALI6 (unsigned)

LD rp, -VAL16 ; FORM HL - VAL16
ADD HL, top
JR C,DEST ;BRANCH IF NO BORROW NEEDED

· Branch if (SP) ;::::: (HL) (unsigned)

SCF
SBC HL,SP
JR C,DEST

; FORM HL - SP-l

;BRANCH IF BORROW NEEDED

118 ZSO ASSEMBLY LANGUAGE SUBROUTINES

· Branch if (SP) 2:: VAL16 (unsigned)

LD HL,-VAL16 ;FORM SF' - VAL16
ADD HL, tOP
JR C,DEST ;BRANCH IF NO BORROW NEEDED

· Branch if (xy) 2:: VAL16 (unsigned)

LD rp,-VAL16 ;FORM XY - VAL16
ADD >:y, SP
JR C,DEST ;BRANCH IF NO BORROW NEEDED

· Branch if (xy) 2:: (HL) (unsigned)

PUSH xy ; TRANSFER INDEX REG TO REGISTER PAIR
POP rp
SCF ;FORM HL - XY - 1
SBC HL,t"p
,..IR C,DEST ; BRANCH IF BORROW NEEDED

SKIP INSTRUCTIONS

Skip instructions can be implemented on the Z80 microprocessor by using jump
instructions with the proper destination. That destination should be one instruction
beyond the one that follows the jump sequentially. The actual number of bytes skipped
will vary, since Z80 instructions vary from one to four bytes in length.

SUBROUTINE CALL INSTRUCTIONS

Unconditional Call Instructions

An indirect call on the Z80 microprocessor can be implemented by calling a routine
that performs an indirect jump. An RET instruction at the end of the subroutine will
then transfer control back to the original calling point. The main program performs

CALL TRANS

where subroutine TRANS transfers control to the ultimate destination. Note that
TRANS ends with a jump, not with a return. Typical TRANS routines are

· To address in HL

TRANS: JP (HL) ;ENTRY POINT IN HL

· To address in an index register

TRANS: ,..IP <>:y) ;ENTRY POINT IN AN INDEX REGISTER

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 119

· To address in DE

TRANS: EX
.JP

DE,HL
(HL)

jENTRY POINT IN DE

· To address in BC

TRANS: LD
LD
,JP

H,B
L,C
<.HL)

jENTRY POINT IN BC

or

TRANS: PUSH BC
RET

jENTRY POINT IN BC

The second alternative is longer, but leaves HL unchanged.

· To address in memory locations ADDR and ADDR+1

TRANS: LD HL,(ADDR) jENTRY POINT AT ADDR
.JP (HL)

· To address at the top of the stack. Here we must exchange the return address
with the top of the stack. This can be done in the main program as follows:

LD
EX
\-IP

HL,RETPT
HL, (SP)
(HL)

jGET RETURN POINT ADDRESS
jPUT RETURN ADDRESS ON STACK
jAND ,JUMP TO OLD TOP OF STACK

The exchange can allow later resumption of a suspended program or provide a
special exit to an error-handling routine.

You can implement indexed calls in the same way as indirect calls. The CALL
instruction transfers control to a routine that performs an indexed jump as shown
earlier. That routine ends with an ordinary jump instruction (typically JP (HL» that
does not affect the stack. An RET instruction at the end of the actual subroutine will
thesefore_ transfer control back to the original calling point.

If the main program executes CALL JMPIND with the index in the accumulator
and the starting address of the jump table in register pair HL, the indexedjump routine
is

jCALCUlATE ADDRESS OF ELEMENT
jFETCH ELEMENT FROM ADDRESS TABLE

jAND ,JUMP TO IT

jDOUBLE INDEX FOR 2-BYTE ENTRIES
jEXTEND INDEX TO 16 BITS

,JMPIND: ADD A,A
LD E,A
LD D,O
ADD HL,DE
LD E, (HL)
INC HL
LD D, (HL)
EX DE,HL
.JP (HL)

One problem with indexed and indirect calls is that the transfer routines may
interfere with the subroutines. For example, the indexed jump routine JMPIND
changes the accumulator, register pair DE, register pair HL, and the flags. Thus, none

120 Z80 ASSEMBLY LANGUAGE SUBROUTINES

of these registers can be used to pass parameters to the subroutine. The programmer
must always remember that the intermediate transfer routines are interposed between
the main program and the actual subroutine. A similar interposition occurs when
operating system routines transfer control from one task to another or from a main
program to an 110 driver or an interrupt service routine.

Conditional Call Instructions

Conditional calls can be implemented on the Z80 by using the sequences shown for
conditional branches. The only change is that jumps to the actual destination must be
replaced with calls (for example, replace lR NZ,DEST with CALL NZ,DEST or lP
P,DEST with CALL P,DEST).

SUBROUTINE RETURN INSTRUCTIONS

Unconditional Return Instructions

The RET instruction returns control automatically to the address saved at the top of
the stack. If the return address is saved elsewhere (for example, in a register pair or in
two fixed memory locations) you can transfer control to it by performing an indirect
jump.

Conditional Return Instructions

Conditional returns can be implemented on the Z80 microprocessor by using the
sequences shown earlier for conditional branches. The only change is that you must
replace jumps to the actual destination with RETs (for example, replace lR NC, DEST
with RET NC or lP M,DEST with RET M).

Return with Skip Instructions

. Return control to the address at the top of the stack after it has been
incremented by an offset NEXT. This sequence lets you transfer control past
parameters, data, and other non-executable items.

POP DE
LD HL,NEXT
ADD HL,DE
,JP (HL)

;GET RETURN ADDRESS
;OFFSET TO NEXT EXECUTABLE INSTRUCTION

;AND RETURN

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONSANDADDRESSING MODES 121

. Change the return address to RETPT. Assume that the return address is
currently stored at the top of the stack.

LD
EX

HL,RETPT
HL, (SP)

;CHANGE RETURN ADDRESS TO RETPT

EX HL,(SP) exchanges HL with the top of the stack. This procedure allows you to
force a special exit to an error routine or other exception-handling program without
changing the logic of the subroutine or losing track of the original return address.

Return from Interrupt Instructions

If the initial portion of the interrupt service routine saves all the primary registers
and the index registers with the sequence

PUSH AF
PUSH BC
PUSH DE
PUSH HL
PUSH IX
PUSH IV

a standard return sequence is

;SAVE PRIMARY REGISTERS

;SAVE INDEX REGISTERS

;REENABLE INTERRUPTS

;RESTORE INDEX REGISTERS

;RESTORE PRIMARY REGISTERS

POP IY
POP IX
POP HL
POP DE
POP BC
POP AF
EI
RET!

The order of restoration is the opposite of the order in which the registers were
saved. The instruction EI must come immediately before RETI to avoid unnecessary
stacking of return addresses.

MISCELLANEOUS INSTRUCTIONS

In this category, we include no operations, push, pop, halt, wait, trap (break or
software interrupt), decimal adjust, enabling and disabling of interrupts, translation
(table lookup), and other instructions that do not fall into any of the earlier categories.

1. No Operation Instructions.

Like NOP itself, any LD instruction with the same source and destination register
does nothing except advance the program counter. These additional no-ops are

122 Z80 ASSEMBLY LANGUAGE SUBROUTINES

LD A,A
LD e,e
LD C,C
LD D,D
LD E,E
LD H,H
LD L,L

2. Push Instructions.

· Push a single register (A, B, D, or H)

PUSH ..-p

INC SP
;PUSH THE REGISTER PAIR
;BUT DROP THE LESS SIGNIFICANT HALF

The register pair could be AF: Programmers generally prefer to combine byte-length
operands or simply waste a byte of the stack rather than attempt to push a single byte.

· Push memory location ADDR

LD A, (ADDRl ;OBTAIN.DATA FROM MEMORY
PUSH AF ;PUSH DATA, FLAGS
INC SP ;THEN DROP THE FLAGS

ADDR could be an external priority or control register (or a copy of an external
register).

· Push memory locations ADDR and ADDR+I

LD HL,(ADDRl ;PUSH A PAIR OF MEMORY LOCATIONS
PUSH HL

· Push the interrupt flip-flop IFF2

LD A,I ;MOVE IFF2 TO PARITY/OVERFLOW FLAG
PUSH AF

This sequence allows you to save the interrupt status in the Parity/ Overflow flag (bit
2 of register F) for later restoration.

3. Pop (Pull) Instructions.

· Pop a single register (A, B, D, or H), assuming that it has been saved as shown
previously

DEC SP ;BACK UP THE STACK POINTER
POP rp ;POP THE REGISTER PAIR

This sequence changes the less significant half of the register pair unpredictably.

· Pop memory location ADDR, assuming that it has been saved at the top of the
stack

DEC SP
POP AF
LD (ADDRl , A

;BACK UP THE STACK POINTER
;POP ACCUMULATOR AND FLAGS
;RESTORE DATA TO MEMORY

ENABLE:
DONE:

CHAPTER2 IMPLEMENTING ADDITIONAL INSTRUCTIONSANDADDRESSING MODES 123

This sequence changes the flags unpredictably. ADDR could be an external priority
or control register (or a copy of an external register).

. Pop memory locations ADDR and ADDR+1, assuming that they were saved as
shown previously

POP HL ;RESTORE A PAIR OF MEMORY LOCATIONS
LD (ADDR) , HL

Sometimes you must push and pop key memory locations and other values beside the
registers.

. Restore interrupt status, assuming that it has been saved at the top of the stack.

POP AF ;OBTAIN PREVIOUS INTERRUPT STATUS
....IP PE, ENABLE
DI ;DISABLE INTERRUPTS IF PREVIOUSLY SO
....IR DONE
EI ;ENABLE INTERRUPTS IF PREVIOUSLY SO
NOP

The interrupt flip-flop IFF2 is saved in the Parity/Overflow flag; interrupts were
previously enabled if that flag is 1 and disabled if it is O.

Wait Instructions

The simplest way to implement a wait on the Z80 microprocessor is to use an endless
loop such as

HERE:IP HERE

The processor will execute lP until it is interrupted and will resume executing it after
the interrupt service routine returns control. Of course, regular interrupts must have
been enabled (with EI) or the processor will execute the endless loop indefinitely. The
non-maskable interrupt can interrupt at any time without being enabled.

Trap Instructions

The common Z80 traps (also called breaks or software interrupts) are the RST
instructions (see the list in Table 1-9). RST n calls the subroutine starting at address n.
Thus, for example, RST 0 transfers control to memory address 0000 after saving the
current program counter in the stack. Similarly, RST 30H transfers control to memory
address 003016 after saving the current program counter in the stack. The interrupt
system generally uses the RST instructions, but the programmer can dedicate unused
ones to common subroutines, error traps, or supervisor entry points. RST then serves
as a I-byte call.

124 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Adjust Instructions

1. Branch if accumulator does not contain a valid decimal (BCD) number.

LD reg, A
ADD A,O
DAA
CMP reg
,JR NZ, DEST

;SAVE COPY OF ACCUMULATOR
;THEN DECIMAL ADJUST ACCUMULATOR

;D1D DECIMAL ADJUST CHANGE A?
;YES, A WAS NOT DECIMAL

2. Decimal increment accumulator (add 1 to A in decimal).

ADD A,l
DAA

;ADD 1 IN DECIMAL

3. Decimal decrement accumulator (subtract 1 from A in decimal).

or

SUB
DAA

;SUBTRACT 1 IN DECIMAL

;SUBTRACT 1 BY ADDING 99ADD A,99H
DAA

The second alternative is compatible with the 8080 and 8085 processors, where DAA
works properly only after addition instructions.

Enable and Disable Interrupt Instructions

1. Enable interrupts but save previous value of interrupt flip-flop 2 (the interrupt
status).

LD A,I
PUSH AF
EI

;MOVE INTERRUPT FLIP-FLOP TO P/V FLAG
;SAVE OLD IFF2 IN STAC~

;THEN ENABLE INTERRUPTS

2. Disable interrupts but save previous value of interrupt flip-flop 2 (the interrupt
status).

LD A,I
PUSH AF
DI

;MOVE INTERRUPT FLIP-FLOP TO P/V FLAG
;SAVE OLD IFF2 IN STACK
;THEN DISABLE INTERRUPTS

3. Restore interrupt status, assuming that it is currently saved in the Parity/
Overflow flag at the top of the stack.

POP AF
,JP PE, ENABLE

;OBTAIN PREVIOUS INTERRUPT STATUS
;WERE INTERRUPTS ENABLED ORIGINALLY?

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 125

ENABLE:
DONE:

DI
.JR DONE
EI
NOP

;NO, THEN DISABLE THEM NOW

;YES, THEN ENABLE THEM NOW

After LD A,I or LD A,R, lP PE means "branch if interrupts are enabled," while lP
PO means "branch if interrupts are disabled."

Translate Instructions

1. Translate the accumulator into the corresponding entry in a table starting at the
address in register pair HL.

LD E,A
LD D,O
ADD HL,DE
LD A, (HL)

;EXTEND OPERAND TO 16-BIT INDEX

;USE OPERAND TO ACCESS TABLE
;REPLACE OPERAND WITH TABLE ENTRY

;MOVE STARTING ADDRESS TO DE
;EXTEND OPERAND TO 16-BIT INDEX

;DOUBLE INDEX FOR 2-BYTE ENTRIES
;CALCULATE INDEXED ADDRESS
;OBTAIN ENTRY

This procedure can be used to convert data from one code to another.

2. Translate the accumulator into the corresponding 16-bit entry in a table starting
at the address in register pair HL. Place the entry in HL.

EX DE,HL
LD L,A
LD H,O
ADD HL,HL
ADD HL,DE
LD E,(HL)
INC HL
LD D, (HL)
EX DE,HL ;MOVE ENTRY TO HL

Using ADD HL,HL to double the operand allows it to take on any 8-bit value (using
ADD A,A would limit us to values below 128).

Miscellaneous Instructions

I. Allocate space on the stack; decrease the stack pointer to provide NUM empty
locations at the top.

LD HL,-NUM
ADD HL,SP
LD SP,HL

;ADD NUM EMPTY BYTES TO TOP OF STACK

;SP = SP - NUM

An alternative is a series of DEC SP instructions.

2. Deallocate space from the stack; increase the stack pointer to remove NUM
temporary locations from the top.

126 Z80 ASSEMBLY LANGUAGE SUBROUTINES

LD HL,NUM
ADD HL,SP
LD SP,HL

;DELETE NUM BYTES FROM STACK

;SP = SP + NUM

An alternative is a series of INC SP instructions.

ADDITIONAL ADDRESSING MODES

. Indirect Addressing. Indirect addressing can be provided on the Z80 processor by
loading the indirect address into register pair HL. Then addressing through HL
provides the equivalent of true indirect addressing. This is a two-step process that
generally requires HL, although BC or DE can be employed to load and store the
accumulator. The index registers may also be used, although at the cost of extra
execution time and memory. Note that indexed addressing with a 0 offset is simply a
slow version of indirect addressing.

Examples

I. Load the accumulator indirectly from the address in memory locations ADDR
and ADDR+l.

LD HL,(ADDR) ; FETCH INDIRECT ADDRESS
LD A,(HL) ; FETCH DATA INDIRECTLY

or

LD xy, (ADDR) ; FETCH INDIRECT ADDRESS
LD A, (>:y+(I) ; FETCH DATA INDIRECTLY

2. Store the accumulator indirectly at the address in memory locations ADDR and
ADDR+I.

LD HL,(ADDR) ; FETCH INDIRECT ADDRESS
LD (HL), A ; STORE DATA INDIRECTLY

or

LD xy,(ADDR) ; FETCH INDIRECT ADDRESS
LD (xy+(I),A ; STORE DATA INDIRECTLY

3. Load the accumulator indirectly from the address in register pair HL (that is,
from the address stored starting at the address in HL).

LD E,(HL) ;FETCH INDIRECT ADDRESS
INC HL
LD D,(HL)
LD A,(DE) ;FETCH DATA INDIRECTLY

CHAPTER2 IMPLEMENTING ADDITIONAL INSTRUCTIONSANDADDRESSING MODES 127

4. Load the accumulator indirectly from the address in an index register (that is,
from the address stored starting at the address in an index register).

LD
LD
LD

L,(XY+O)
H, (}:y+l)
A, (HL)

;FETCH INDIRECT ADDRESS

;FETCH DATA INDIRECTLY

5. Store the accumulator indirectly at the address in register pair HL (that is, at the
address stored starting at the address in HL).

LD E, (HL)
INC HL
LD D, (HL)
LD (DE),A

;FETCH INDIRECT ADDRESS

;STORE DATA INDIRECTLY

6. Store the accumulator indirectly at the address in an index register (that is, at the
address stored starting at the address in an index register).

LD
LD
LD

L,(xy+O)
H.<>:y+l)
(HL).A

;FETCH INDIRECT ADDRESS

;STORE DATA INDIRECTLY

7. Jump indirectly to the address in memory locations ADDR and ADDR+ 1.

LD HL.(ADDR) ;FETCH INDIRECT ADDRESS
JP (HL) ;AND TRANSFER CONTROL TO IT

or

LD
JP

Xy,(ADDR)
(Xy)

;FETCH INDIRECT ADDRESS
;AND TRANSFER CONTROL TO IT

Indirection can be repeated indefinitely to provide multi-level indirect addressing. For
example, the following routine uses the indirect address indirectly to load the
accumulator:

LD E.(HL)
INC HL
LD D.(HL)
EX DE,HL
LD E. (HL)
INC HL
LD D,(HL)
LD A, (DE)

;FETCH FIRST INDIRECT ADDRESS

;USE INDIRECT ADDRESS INDIRECTLY

;FETCH DATA INDIRECTLY

Indirect addresses should be stored in memory in the usual Z80 format-that is, with
the less significant byte first (at the lower address) .

. Indexed Addressing. Indexed addressing can be provided by using ADD HL to
add the base and the index. Obviously, the explicit addition requires extra execution
time. The index registers are useful when the index is fixed (as in a data structure) or
when HL is already occupied.

128 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Examples

1. Load the accumulator from an indexed address obtained by adding the accumu
lator to a fixed base address.

LD DE, BASE
LD L,A
LD H,O
ADD HL,DE
LD A, (HL)

;GET BASE ADDRESS
;EXTEND INDEX TO 16 BITS

;CALCULATE INDEXED ADDRESS
;FETCH DATA FROM INDEXED ADDRESS

2. Load the accumulator from an indexed address obtained by adding the accumu
lator to memory locations BASE and BASE+ 1.

LD HL,(BASE)
LD E,A
LD D,O
ADD HL,DE
LD A, (HL)

;GET BASE ADDRESS
;EXTEND INDEX TO 16 BITS

;CALCULATE INDEXED ADDRESS
;FETCH DATA FROM INDEXED ADDRESS

3. Load the accumulator from an indexed address obtained by adding memory
locations INDEX and INDEX+ 1 to register pair HL.

LD DE, <INDEX)
ADD HL,DE
LD A, (HL)

;GET INDEX FROM MEMORY
;CALCULATE INDEXED ADDRESS
;FETCH DATA FROM INDEXED ADDRESS

4. Jump indexed to a jump instruction in a list. The index is in the accumulator and
the base address of the list is in register pair HL.

LD B,A ;MULTIPLY INDEX TIMES 3
ADD A,A
ADD B,A
LD C,A ;EXTEND INDEX TO 16 BITS
LD B,O
ADD HL,BC ;CALCULATE INDEXED ADDRESS
JP (HL) ;AND TRANSFER CONTROL THERE

The following is a typical list starting at address BASE:

BASE: JP SUBO ;JUMP TO SUBROUTINE 0
JP SUBI ;JUMP TO SUBROUTINE 1
JP SUB2 ;JUMP TO SUBROUTINE 2

Since each JP instruction occupies three bytes, we must multiply the index by 3 before
adding it to the base address. If the list is more than 256 bytes long, we can use the
following procedure to multiply the index by 3:

EX DE,HL ;SAVE BASE ADDRESS IN DE
LD L,A ;EXTEND INDEX TO 16 BITS
LD H,O
LD B,L ;COPY INDEX INTO BC

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 129

LD C,H
ADD HL,HL
ADD HL,BC
ADD HL,DE
,.JP (HL)

;DOUBLE INDEX
;TRIPLE INDEX
;CALCULATE INDEXED ADDRESS
;AND TRANSFER CONTROL THERE

. Autopreincrementing. In autopreincrementing, the address register is incre
mented automatically before it is used. Autopreincrementing can be provided on the
Z80 by incrementing a register pair before using it as an address.

Examples

· Load the accumulator using autopreincrementing on register pair HL.

INC HL
LD A, (HL)

;AUTOPREINCREMENT HL
;FETCH DATA

· Store the accumulator using autopreincrementing on register pair DE.

INC DE
LD (DE), A

;AUTOPREINCREMENT DE
;STORE DATA

· Load register pair DE starting at the address two larger than the contents of HL.

INC HL ; AUTOPREINCREMENT HL BY 2
INC HL
LD E, (HL) ; FETCH LSB
INC HL
LD D, (HL) ; FETCH MSB

Autoincrementing by 2 is essential in handling arrays of addresses or 16-bit data
items.

· Store the accumulator using autopreincrementing on memory locations ADDR
and ADDR+-l.

LD HL,(ADDR)
INC HL
LD (HL), A
LD (ADDR),HL

;AUTOPREINCREMENT INDIRECT ADDRESS

;STORE DATA
;UPDATE INDIRECT ADDRESS

Autopreincrementing can be combined with indirection. Here memory locations
ADDR and ADDR+- 1 could point to the last occupied location in a buffer.

· Transfer control to the address stored starting at an address two larger than the
contents of memory locations NXTPGM and NXTPGM+ 1.

LD HL,(NXTPGM) ;GET POINTER
INC HL ;AUTOPREINCREMENT POINTER
INC HL
LD (NXTPGM),HL ;UPDATE POINTER
LD E,(HL) ;FETCH STARTING ADDRESS
INC HL

130 280 ASSEMBLY LANGUAGE SUBROUTINES

LD
EX
•..IP

D, (HL)
DE,HL
(HL)

;AND TRANSFER CONTROL TO IT

Here NXTPGM and NXTPGM+ I point to the starting address of the routine that
the processor hasjust executed. Initially, NXTPGM and NXTPGM+ 1would contain
BASE-2, where BASE is the starting address of a table of routines. A typical table
would be

BASE: DW
DW
DW
DW

ROUTO
ROUT1
ROUT2
ROUT3

;STARTING ADDRESS FOR ROUTINE 0
;STARTING ADDRESS FOR ROUTINE 1
;STARTING ADDRESS FOR ROUTINE 2
;STARTING ADDRESS FOR ROUTINE 3

· Autopostincrementing. In autopostincrementing, the address register is incre
mented after it is used. Autopostincrementing can be provided on the Z80 by
incrementing a register pair after using it as an address. Note that the Z80 autopostin
crements the stack pointer when it executes POP and RET.

Examples

· Load the accumulator using autopostincrementing on register pair HI,.

LD A, (HL)
INC HL

;FETCH DATA
;AUTOPOSTINCREMENT HL

;FETCH INDIRECT ADDRESS
;STORE DATA
;AUTOPOSTINCREMENT INDIRECT ADDRESS

· Store the accumulator using autopostincrementing on register pair DE.

LD (DE),A ;STORE DATA
INC DE ;AUTOPOSTINCREMENT DE

· Load register pair DE starting at the address in HI,. Then increment HL by 2.

LD E,(HL) ;FETCH LSB
INC HL
LD D,(HL) ;FETCH MSB
INC HL

Autoincrementing by 2 is essential in handling arrays of addresses or 16-bit data
items. Note that postincrementing is generally simpler and more natural than
preincrementing.

· Store the accumulator using autopostincrementing on memory locations ADDR
and ADDR+l.

LD HL,(ADDR)
LD (HL), A
INC HL
LD (ADDR), HL

· Autopostincrementing can be combined with indirection. Here memory locations
ADDR and ADDR+ I could point to the next empty location in a buffer.

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 131

. Transfer control to the address stored at the address in memory locations
NXTPGM and NXTPGM+ 1. Then increment those locations by 2.

LD HL,(NXTPGM)
LD E,(HL) ;FETCH STARTING ADDRESS
INC HL
LD D, (HL)
INC HL ;COMPLETE AUTOPOSTINCREMENT
LD (NXTPGM),HL
EX DE,HL ;TRANSFER CONTROL TO START ADDRESS
..JP (HL)

Here NXTPGM and NXTPGM+ 1point to the starting address of the next routine
the processor is to execute. Initially, NXTPGM and NXTPGM+ 1 would contain
BASE, the starting address of a table of routines. A typical table would be

BASE: DW
DW
DW
DW

ROUTO
ROUTt
ROUT2
ROUT3

;STARTING ADDRESS FOR ROUTINE 0
;STARTING ADDRESS FOR ROUTINE t
;STARTING ADDRESS FOR ROUTINE 2
;STARTING ADDRESS FOR ROUTINE 3

. Autopredecrementing. In autopredecrementing, the address register is decre
mented automatically before it is used. Autopredecrementing can be provided on the
Z80 processor by decrementing a register pair before using it as an address. Note that
the processor autopredecrements the stack pointer when it executes PUSH and
CALL.

Examples

· Load the accumulator using autopredecrementing on register pair HL.

DEC HL ;AUTOPREDECREMENT HL
LD A,(HL) ;FETCH DATA

· Store the accumulator using autopredecrementing on register pair DE.

DEC DE
LD (DE), A

;AUTOPREDECREMENT DE
;STORE DATA

;FETCH MSB

;FETCH LSB

· Load register pair DE starting at the address two smaller than the contents of HL.

DEC HL
LD D,(HL)
DEC HL
LD E, (HL)

Autodecrementing by 2 is essential in handling arrays of addresses or 16-bit data
items. Note that predecrementing is generally simpler and more natural than
postdecrementing.

. Store the accumulator using autopredecrementing on memory locations ADDR
and ADDR+l.

132 Z80 ASSEMBLY LANGUAGE SUBROUTINES

LD HL,(ADDR) ;AUTOPREINCREMENT INDIRECT ADDRESS
DEC HL
LD (HL),A ;STORE DATA
LD (ADDR),HL ;UPDATE INDIRECT ADDRESS

Autodecrementing can be combined with indirection. Here memory locations ADDR
and ADDR+ 1 could point to the last occupied location in a stack.

. Transfer control to the address stored at an address two smaller than the contents
of memory locations NXTPGM and NXTPGM+ 1.

LD HL,(NXTPGM) ;FETCH STARTING ADDRESS
DEC HL
LD D, (HL)
DEC HL
LD E,(HL)
LD (NXTPGM),HL ;STORE AUTOPREDECREMENTED POINTER
EX DE,HL ;TRANSFER CONTROL TO START ADDRESS
,JP (HL)

Here NXTPGM and NXTPGM+ 1 point to the starting address of the most recently
executed routine in a list. Initially, NXTPGM and NXTPGM+ 1 would contain
FINAL+2, where FINAL is the address of the last entry in a table of routines. A
typical table would be

FINAL:

DW
DW

DW

ROUTO
ROUT1

ROUTL

;STARTING ADDRESS FOR ROUTINE 0
;STARTING ADDRESS FOR ROUTINE 1

;STARTING ADDRESS FOR LAST ROUTINE

Here we work through the table backward. This approach is useful in evaluating
mathematical formulas entered from a keyboard. If, for example, the computer must
evaluate the expression

Z = LN (A x SIN (B x EXP(C x V»~)

it must work backward. That is, the order of operations is

· Calculate C x Y

· Calculate EXP (C x Y)

· Calculate B x EXP(C x Y)

· Calculate SIN (B x EXP(C x Y))

· Calculate A x SIN (B x EXP(C x Y))

· Calculate LN(A x SIN(B x EXP(C x Y))) .

Working backward is convenient when the computer cannot start a task until it has
received an entire line or command. It must then work back to the beginning.

CHAPTER2 IMPLEME~~TINGADDITIONALINSTRUCTIONSANDADDr~ESSINGMODES 133

· Autopostdecrementing. In autopostdecrementing, the address register is decre
mented automatically after it is used. Autopostdecrementing can be implemented on
the Z80 by decrementing a register pair after using it as an address.

Examples

· Load the accumulator using autopostdecrementing on register pair HL.

LD A, (HL)
DEC HL

;FETCH DATA
;AUTOPOSTDECREMENT HL

· Store the accumulator using autopostdecrementing on register pair DE.

LD (DE), A
DEC DE

;STORE DATA
;AUTOPOSTDECREMENT DE

;FETCH INDIRECT ADDRESS
;STORE DATA
;AUTOPOSTDECREMENT INDIRECT ADDRESS

· Load register pair DE starting a~ the address in HL. Afterward, decrement HL
by 2.

INC HL ; FETCH MSB
LD D, (HL)
DEC HL ; FETCH LSB
LD E, (HL)
DEC HL ; AUTOPOSTDECREMENT HL BY 2
DEC HL

Autodecrementing by 2 is essential in handling arrays of addresses or 16-bit data items.

· Store the accumulator using autopostdecrementing on memory locations ADDR
and ADDR+l.

LD HL,(ADDR)
LD (HL), A
DEC HL
LD (ADDR),HL

Autopostdecrementing can be combined with indirection. Here memory locations
ADDR and ADDR+ 1 could point to the next empty location in a buffer.

· Transfer control to the address stored at the address in memory locations
NXTPGM and NXTPGM + 1. Then decrement those locations by 2.

LD HL,(NXTPGM) ;FETCH POINTER
INC HL ;FETCH STARTING ADDRESS
LD D, (HL)
DEC HL
LD E,(HL)
DEC HL ;AUTOPOSTDECREMENT POINTER
DEC HL
LD (NXTPGM),HL
EX DE,HL ;JUMP TO STARTING ADDRESS
.JP (HL)

Here NXTPGM and NXTPGM+ 1 point to the starting address of the next routine

134 Z80 ASSEMBLY LANGUAGE SUBROUTINES

the processor is to execute. Initially, NXTPGM and NXTPGM+ 1 contain FINAL,
the address of the last entry in a table of routines. A typical table would be

FINAL:

DW
DW

DW

ROUTO
ROUT1

ROUTL

;STARTING ADDRESS OF ROUTINE 0
;STARTING ADDRESS OF ROUTINE 1

;STARTING ADDRESS OF LAST ROUTINE

Here the computer works through the table backward. This approach is useful in
interpreting commands entered in the normalleft-to-right manner from a keyboard.
For example, assume that the operator of a process controller enters the command
SET TEMP(POSITION 2) MEAN(TEMP(POSITION 1), TEMP(POSITION 3)).
The controller program must execute the command working right-to-Ieft and starting
from inside the inner parentheses as follows:

1. Determine the index corresponding to POSITION 1.

2. Obtain TEMP(POSITION 1) from a table of temperature readings.

3. Determine the index corresponding to POSITION 3.

4. Obtain TEMP(POSITION 3) from a table of temperature readings.

5. Evaluate MEAN(TEMP(POSITION 1), TEMP(POSITION 3)) by executing
the MEAN program with the two entries as data.

6. Determine the index corresponding to POSITION 2.

7. Execute the SET function, which presumably involves setting controls and
parameters to achieve the desired value of TEMP (POSITION 2).

The operator enters the command working left to right and from outer parentheses
to inner parentheses. The computer, on the other hand, must execute it inside out
(starting from the inner parentheses) and right to left. Autodecrementing is obviously
a handy way to implement this reversal.

. Indirect preindexed addressing (preindexing). In preindexing, the processor
must first calculate an indexed address and then use that address indirectly. Since the
indexed table must consist of 2-byte indirect addresses, the indexing must involve a
multiplication by 2.

Examples

. Load the accumulator using preindexing. The base address is in an index register
and the index is a constant INDEX.

LD
LD
LD

L, (>:y+2*INDEX)
H, (xy+2*INDEX+1)
A, (HL)

OBTAIN LSB OF ADDRESS
OBTAIN MSB OF ADDRESS
OBTAIN DATA INDIRECTLY

CHAPTER 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS A[\D ADDRESSING MODES 135

Because of the limitations of Z80 indexing, this approach works only when INDEX is a
constant.

· Load the accumulator using preindexing. The base address is in register pair HL
and the index is in the accumulator.

ADD A,A
LD E,A
LD [1,0
ADD HL,DE
LD E, (HL)
INC HL
LD D, (HL)
LD A, (DE)

;DOUBLE INDEX FOR 2-BYTE ENTRIES
;EXTEND INDEX TO 16 BITS

;CALCULATE INDEXED ADDRESS
;OBTAIN INDIRECT ADDRESS

;OBTAIN DATA INDIRECTLY

· Store the accumulator using preindexing. The base address is in memory locations
ADDR and ADDR+ I and the index is a constant INDEX.

LD xy, (ADDR) ;OBTAIN BASE ADDRESS
LD L,(xy+2*INDEX) ;OBTAIN INDIRECT ADDRESS
LD H,(xy+2*INDEX+1)
LD (HL),A ;STORE DATA INDIRECTLY

· Store the accumulator using preindexing. The base address is in memory locations
ADDR and ADDR+I and the index is in memory location INDEX.

LD HL,(ADDR)
LD B,A
LD A, (INDEX)
ADD A,A
LD E,A
LD [1,0
ADD HL,DE
LD E,(HL)
INC HL
LD [I, (HL)
EX DE,HL
LD (HL), B

;FETCH BASE ADDRESS
;SAVE DATA
;FETCH INDEX
;DOUBLE INDEX FOR 2-BYTE ENTRIES
;EXTEND INDEX TO 16 BITS

;CALCULATE INDEXED ADDRESS
;OBTAIN INDIRECT ADDRESS

;STORE DATA INDIRECTLY

· Transfer control (jump) to the address obtained indirectly from the table starting
at address JTAB. The index is in the accumulator.

ADD A,A
LD E,A
LD D,O
LD HL, ...ITAB
ADD HL,DE
LD E, (HL)
INC HL
LD D, (HL)
EX DE,HL
dP (HL)

;DOUBLE INDEX FOR 2-BYTE ENTRIES
;EXTEND INDEX TO 16 BITS

;GET BASE ADDRESS
;CALCULATE INDEXED ADDRESS
;OBTAIN INDIRECT ADDRESS

;dUMP TO INDIRECT ADDRESS

136 Z80 ASSEMBLY LANGUAGE SUBROUTINES

The table starting at address JTAB would appear as follows:

..HAB: DW ROUTO
DW ROUT1
DW ROUT2

;STARTING ADDRESS OF ROUTINE 0
;STARTING ADDRESS OF ROUTINE 1
;STARTING ADDRESS OF ROUTINE 2

. Indirect postindexed addressing (postindexing). In postindexing, the processor
must first obtain an indirect address and then apply indexing with that address as the
base. Thus the indirect address tells the processor where the table or array starts.

Examples

. Load a register using postindexing. The base address is in memory locations
ADDR and ADDR+ 1 and the index is a constant OFFSET

LD xy,(ADDR) ;OBTAIN BASE ADDRESS INDIRECTLY
LD reg, (xy+OFFSET);OBTAIN DATA

This approach is useful when ADDR and ADDR+ 1 contain the base address of a
data structure and OFFSET is the fixed distance from the base address to a particular
data item.

. Load the accumulator using postindexing. The base address is in memory loca
tions ADDR and ADDR+ 1 and the index is in the accumulator.

LD HL,(ADDR)
LD E,A
LD D,O
ADD HL,DE
LD A, (HL)

;OBTAIN BASE ADDRESS INDIRECTLY
;EXTEND INDEX TO 16 BITS

;CALCULATE INDEXED ADDRESS
;OBTAIN DATA

;OBTAIN BASE ADDRESS INDIRECTLY
;SAVE DATA
;OBTAIN INDEX
;EXTEND INDEX TO 16 BITS

Store a register using postindexing. The base address is in memory locations
ADDR and ADDR+ 1 and the index is a constant OFFSET

LD xy,(ADDR) ;OBTAIN BASE ADDRESS INDIRECTLY
LD (xy+OFFSET),reg;STORE DATA POSTINDEXED

Store the accumulator using postindexing. The base address is in memory loca
tions ADDR and ADDR+ 1 and the index is in memory location INDEX.

LD HL,(ADDR)
LD B,A
LD A, <INDEX)
LD E,A
LD D,O
ADD HL,DE ;CALCULATE INDEXED ADDRESS
LD (HL),B ;STORE DATA

By changing the contents of memory locations ADDR and ADDR+1, we can make
this routine operate on many different arrays.

CHAPTEr-< 2 IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 137

. Transfer control Uump) to the address obtained by indexing from the base address
in memory locations ADDR and ADDR+ 1. The index is a constant OFFSET

LD xy,(ADDR) ;OBTAIN BASE ADDRESS INDIRECTLY
LD L,(xy+OFFSET) ;OBTAIN LSB OF DESTINATION
LD H,(xy+OFFSET+l);OBTAIN MSB OF DESTINATION
JP (HL) ;JUMP TO DESTINATION

This procedure is useful when a data structure contains the starting address of a
routine at a fixed offset. The routine could, for example, be a driver for an I/O control
block, an error routine for a mathematical function, or a control equation for a process
loop.

. Transfer control Uump) to the address obtained by indexing from the base address
in memory locations ADDR and ADDR+ 1. The index is in the accumulator.

LD B,A ;TRIPLE INDEX FOR 3-BYTE ENTRIES
ADD A,A
ADD A,B
LD E,A ;EXTEND INDEX TO le. BITS
LD D,O
LD HL,(ADDR) ;OBTAIN BASE ADDRESS INDIRECTLY
ADD HL,DE ; CALCULATE INDEXED ADDRESS
JP (HL) ;AND TRANSFER CONTROL TO IT

The table contains 3-byte JP instructions; a typical example is

BASE: JP
•.JP
..JP

ROUTO
ROUTl
ROUT2

;JUMP TO ROUTINE 0
;JUMP TO ROUTINE 1
;JUMP TO ROUTINE 2

The address BASE must be placed in memory locations ADDR and ADDR+ 1.

REFERENCES

1. Fisher, W.P., "Microprocessor Assembly Language Draft Standard," IEEE
Computer, December 1979, pp. 96-109. (See also Distler, R.J. and M.A. Shaver, "Trial
Implementation Reveals Errors in IEEE Standard," IEEE Computer, July 1982,
pp. 76-77.)

2. Osborne, A., An Introduction to Microcomputers. Volume 1: Basic Concepts.
2nd ed. Berkeley, Calif.: Osborne/McGraw-Hill, 1980.

3. Leventhal, L.A., 8080Aj8085 Assembly Language Programming. Berkeley,
Calif.: Osborne/ McGraw-Hill, 1978.

4. Fischer, op. cit.

Chopter3 m
Errors

Pr mming

This chapter describes common errors in Z80 assembly language programs. The
final section describes common errors in input/ output drivers and interrupt service
routines. Our aims here are the following:

· To warn programmers of potential trouble spots and sources of confusion.

· To describe likely causes of programming errors.

· To emphasize the techniques and warnings presented in Chapters land 2.

· To inform maintenance programmers of likely places to look for errors and
misinterpretations.

· To provide the beginner with a starting point in the difficult process of locating
and correcting errors.

Of course, no list of errors can be complete. Only the most common errors are
emphasized - not the infrequent or subtle errors that frustrate even the experienced
programmer. However, most errors are remarkably obvious once uncovered, and this
discussion should help in debugging most programs.

CATEGORIZATION OF PROGRAMMING ERRORS

Common Z80 programming errors can be divided into the following categories:

· Reversing the order of operands or parts of operands. Typical errors include
reversing source and destination in load instructions, inverting the format in which
l6-bit quantities are stored, and inverting the direction of subtractions or comparisons.

139

140 Z80 ASSEMBLY LANGUAGE SUBROUTINES

· Using the flags improperly. Typical errors include using the wrong flag (such as
Sign instead of Carry), branching after instructions that do not affect a particular flag,
inverting branch conditions (particularly those involving the Zero flag), branching
incorrectly in equality cases, and changing a flag accidentally before branching.

· Confusing registers and register pairs. A typical error is operating on a register
instead of on a register pair.

· Confusing addresses and data. The most common error is omitting the paren
theses around an address and hence accidentally using immediate addressing instead
of direct addressing. Another error is confusing registers or register pairs with the
memory locations addressed via register pairs.

· Using the wrong formats. Typical errors include using BCD (decimal) instead of
binary, or vice versa, and using binary or hexadecimal instead of ASCII.

· Handling arrays incorrectly. The usual problem is going outside the array's
boundaries.

· Ignoring implicit effects. Typical errors include using the accumulator, a register
pair, the stack pointer, flags, or memory locations without considering the effects of
intervening instructions. Most errors arise from instructions that have unexpected,
implicit, or indirect effects.

· Failing to provide proper initial conditions for routines or for the microcomputer
as a whole. Most routines require the initialization of counters, indirect addresses, base
addresses, registers, flags, and temporary storage locations. The microcomputer as a
whole requires the initialization of the interrupt system and all global RAM addresses.
(Note particularly indirect addresses and counters.)

· Organizing the program incorrectly. Typical errors include skipping or repeating
initialization routines, failing to update counters or address registers, and forgetting to
save intermediate or final results.

A common source of errors that is beyond the scope of this discussion is conflict
between user programs and systems programs. A simple example of conflict is for a
user program to save data in memory locations that a systems program also uses. The
user program's data thus changes mysteriously whenever the systems program is
executed.

More complex sources of conflict include the interrupt system, input! output ports,
the stack, and the flags. After all, systems programs must employ the same resources as
user programs. Systems programs generally attempt to save and restore the user's
environment, but they often have subtle or unexpected effects. Making an operating
system transparent to the user is a problem comparable to devising a set of regulations,
laws, or tax codes that have no loopholes or side effects.

CHAPTEi< 3 COMMON PROGRAMMING Ei<RORS 141

REVERSING THE ORDER OF OPERANDS

The following instructions and conventions are the most common sources of errors:

· The LD D,S instruction moves the contents of S to D. Reversing the source and
the destination in LD instructions is probably the single most common error in Z80
assembly language programs. The best way to avoid this problem is to use the operator
notation described by Duncan. I

· l6-bit addresses and data items are assumed to be stored with their less significant
bytes first (that is, at the lower address). This convention becomes particularly confus
ing in instructions that load or store register pairs or use the stack.

· The CP instruction subtracts its operand from the accumulator, not the other way
around. Thus, CP sets the flags as if the processor had calculated (A) -- OPER, where
OPER is the operand specified in the instruction.

Examples

1. LD A,B

This instruction loads the accumulator from register B. Since it does not change B,
the instruction acts like "copy B into A."

2. LD (HL),A

This instruction stores the accumulator at the memory address in register pair HL.
Since it does not change the accumulator, the instruction acts like "copy A into
memory addressed by HL."

3. LD (2040H),A

The address 204016 occupies the two bytes of program memory immediately follow
ing the operation code; 4016 comes first and 2016 last. This order is particularly
important to remember when entering or changing an address at the object code level
during debugging.

4. PUSH HL

This instruction stores register pair HL in memory at the addresses immediately
below the initial contents of the stack pointer (that is, at addresses S-l and S-2 if S is the
initial contents of the stack pointer). Register H is stored at address S-l and L at S-2 in
the usual upside-down format.

5. LD HL,(2050H)

This instruction loads register L from memory address 205016 and H from 205116.

142 Z80 ASSEMBLY LANGUAGE SUBROUTINES

6. I,D (3600H),HL

This instruction stores register L at memory address 360016 and H at address 360116.

7. CPR

This instruction sets the flags as if register B had been subtracted from the
accumulator.

8. CP 25H

This instruction sets the flags as if the number 2516 had been subtracted from the
accumulator.

USING THE FLAGS INCORRECTLY

Z80 instructions have widely varying effects on the flags. There are few general rules,
and even instructions with similar meanings may work differently. Cases that require
special caution are

· Data transfer instructions such as LD and EX (except EX AF, AF') do not affect
any flags. You may need an otherwise superfluous arithmetic or logical instruction
(such as AND A, DEC, INC, or OR A) to set the flags.

· The Carry flag acts as a borrow after CP, SBC, or SUB instructions; that is, the
Carry is set if the 8-bit unsigned subtraction requires a borrow. If, however, you
implement subtraction by adding the two's or ten's complement of the subtrahend, the
Carry is an inverted borrow; that is, the Carry is cleared if the 8-bit unsigned
subtraction requires a borrow and set if it does not.

· After a comparison (CP), the Zero flag indicates whether the operands are equal; it
is set if they are equal and cleared if they are not. There is an obvious source of
confusion here - JZ means "jump if the result is 0," that is, "jurnp if the Zero flag is I."
JNZ, of course, has the opposite meaning.

· When comparing unsigned numbers, the Carry flag indicates which number is
larger. CP sets Carry if the accumulator is less than the other operand and clears it if the
accumulator is greater than or equal to the other operand. Note that the Carry is
cleared if the operands are equal. If this division of cases ("greater than or equal" and
"less than") is not what you want (that is, you want the division to be "greater than" and
"less than or equal"), you can reverse the subtraction, subtract I from the accumulator,
or add I to the other operand.

· In comparing signed numbers, the Sign flag indicates which operand is larger
unless two's complement overflow occurs (see Chapter I). CP sets the Sign flag if the
accumulator is less than the other operand and clears it if the accumulator is greater

CHAPTER 3 COMMON PROGRAMMING ERRORS 143

than or equal to the other operand. Note that comparing equal operands clears the
Sign flag. As with the unsigned numbers, you can handle the equality case in the
opposite way by adjusting either operand or by reversing the subtraction. If overflow
occurs (signified by the setting of the Parity / Overflow flag), the sense of the Sign flag is
inverted.

· All logical instructions except CPL clear the Carry flag. AND A or OR A is, in
fact, a quick, simple way to clear Carry without affecting any registers. CPL affects no
flags at all (XOR OFFH is an equivalent instruction that affects the flags).

· The common way to execute code only if a condition is true is to branch around it
if the condition is false. For example, to increment register B if Carry is I, use the
sequence

NEXT:

dR NC.NEXT
INC B
NOP

The branch occurs if Carry is O.

· Many 16-bit arithmetic instructions have little effect on the flags. INC and DEC do
not affect any flags when applied to register pairs or index registers; ADD HL and
ADD xy affect only the Carry flag. The limited effects on the flags show that these
instructions are intended for address arithmetic, not for the processing of 16-bit data.
Note, however, that ADC HL and SBC HL affect all the flags and can be used for
ordinary processing of 16-bit data.

· INC and DEC do not affect the Carry flag. This allows them to be used for
counting in loops that perform multiple byte arithmetic. (The Carry is needed to
transfer carries or borrows between bytes.) The 8-bit versions of INC and DBC do,
however, affect the Zero and Sign flags, and you can use those effects to determine
whether a carry or borrow occurred.

· The special instructions RLCA, RLA, RRCA, and RRA affect only the Carry
flag.

· Special-purpose arithmetic and logical instructions such as ADD A,A (logical left
shift accumulator), ADC A,A (rotate left accumulator), SUB A (clear accumulator),
and AND A or OR A (test accumulator) affect all the flags.

· PUSH and POP instructions do not affect the flags, except for POP AF which
changes all the flags. Remember, AF consists of the accumulator (MSB) and the flags
(LSB).

Examples

1. The sequence

LD A. (2040H)
JR Z.DONE

144 Z80 ASSEMBLY LANGUAGE SUBROUTINES

has unpredictable results, since LD does not affect the flags. To produce a jump if
memory location 204016 contains 0, use

LD A, (2040H)
AND A ~TEST ACCUMULATOR
JR Z,DONE

OR A may be used instead of AND A.

2. The sequence

LD A,E
JP P,DEST

has unpredictable results, since LD does not affect the flags. Either of the following
sequences forces a jump if register E is positive:

LD A,E
AND A
JP P,DEST

or

SUB A
OR E
JP P,DEST

3. The instruction CP 25H sets the Carry flag as follows:

. Carry = 1 if the contents of A are between 00 and 2416.

. Carry = °if the contents of A are between 2516 and FF16.

The Carry flag is set if A contains an unsigned number less than the other operand
and is cleared if A contains an unsigned number greater than or equal to the other
operand.

I[you want to set Carry if the accumulator contains 2516, use CP 26H instead of CP
25H. That is, we have

CP 25H
JR C,LESS ;BRANCH IF (A) LESS THAN 25

or

CP
JR

26H
C,LESSEQ ~BRANCH IF (A) 25 OR LESS

4. The sequence

RLA
,JP P, DONE

has unpredictable results, since RLA does not affect the Sign flag. The correct
sequence (producing a circular shift that affects the flags) is

ADC A,A ;SHIFT CIRCULAR, SETTING FLAGS
JP P,DONE

;CHECK IF BC HAS ANY 1 BITS

;BC CANNOT BE ZERO IF ANY BITS ARE 1

CHAPTER 3 COMMON PROGRAMMING ERROI~S 145

Of course, you can also use the somewhat slower

RLA
RLA
JR C,DONE

This approach allows a relative branch.

5. The sequence

INC B
\.JR C, OVRFLW

has unpredictable results, since INC does not affect the Carry flag. The correct
sequence is

INC B
..JR Z,OVRFLW

since INC does affect the Zero flag when it is applied to an 8-bit operand.

6. The sequence

DEC B
..JR C,OVRFLW

has unpredictable results, since DEC does not affect the Carry flag. IfB cannot contain
a number larger than 8016 (unsigned), you can use

DEC B
\.JP M,OVRFLW

since DEC does affect the Sign flag (when applied to an 8-bit operand). Note, however,
that you will get an erroneous branch if B initially contains 8116.

A longer but more general sequence is

INC B ;TEST REGISTER B
DEC B
JR Z,OVRFLW ;BRANCH IF B CONTAINS ZERO
DEC B

Note that register B will contain °(not FF16) if the program branches to address
OVRFLW.

7. The sequence

DEC BC
.JR NZ, LOOP

has unpredictable results, since DEC does not affect any flags when it is applied to a
16-bit operand. The correct sequence for decrementing and testing a 16-bit counter in
register pair BC is

DEC Be
LD A,C
OR B
\.JR NZ,LOOP

146 zao ASSEMBLY LANGUAGE SUBROUTINES

This sequence affects the accumulator and all the flags, including Carry (which OR
clears).

8. AND A or OR A cleares Carry without affecting any registers. To clear Carry
without affecting the other flags, use the sequence

SCF
CCF

;FIRST SET THE CARRY FLAG
;THEN CLEAR IT BY COMPLEMENTING

9. SUB A or XOR A clears the accumulator, the Carry flag, and the Sign flag (and
sets the Zero flag). To clear the accumulator without affecting the flags, use LD A,O.

10. The sequence

ADD HL,DE
.JR Z,BNDRY

has unpredictable results, since ADD HL does not affect the Zero flag. To force a
branch if the sum is 0, you must test HL explicitly as follows:

ADD HL,DE
LD A,H ;TEST HAND L FOR ZERO
OR L
,JR Z, BNDRY

An alternative is

AND A ;CLEAR CARRY
ADC HL,DE
,JR Z, BNDRY

Unlike ADD HL, ADC HL affects the Zero flag.

CONFUSING REGISTERS AND REGISTER PAIRS

The rules to remember are

· ADC, ADD, DEC, INC, LD, and SBC can be applied to either 8-bit operands or
16-bit register pairs. ADD, DEC, INC, and LD can also be applied to index registers.

· AND, OR, SUB, and XOR can only be applied to 8-bit operands.

· EX, POP, and PUSH can only be applied to register pairs or index registers.

· (rp) refers to the byte of memory located at the address in the register pair. It does
not refer to either half of the register pair itself.

One common error is that of referring to H or L instead of (HL). The use of register
pairs to hold addresses means that certain transfers are uncommon. For example, LD

CHAPTER 3 COMMON PI<OGI<AMMING ERRORS 147

L,(HL) would load register L from the address in HL; HL would then contain one byte
of an address (in H) and one byte of data (in L). While this is legal, it is seldom useful.

Examples

1. LD A,H

This instruction moves register H to the accumulator. It does not change register H
or any memory location.

2. LD A,(BC)

This instruction loads the accumulator from the memory address in register pair BC.
It does not affect either register B or register C.

3. LD H,O

This instruction places 0 in register H. It does not affect memory.

4. LD (HL),A

This instruction stores the accumulator in the memory location addressed by
register pair HL. It does not affect either H or L. A sequence that loads HL with an
address indirectly is

LD E,(HL) ;GET LSB OF INDIRECT ADDRESS
INC HL
LD D, (HL) ;GET MSB OF INDIRECT ADDRESS
EX DE,HL jPUT INDIRECT ADDRESS IN HL

We may limit ourselves to a single temporary register (the accumulator) by loading the
more significant byte directly into H as follows:

LD A, (HL) ;GET LSB OF INDIRECT ADDRE~:;S

INC HL
LD H, (HL) ;GET MSB OF INDIRECT ADDRESS
LD L,A ;MOVE LSB OF ADDRESS TO L

This takes the same number of clock cycles as the previous sequence, but uses A instead
of DE for temporary storage.

5. LD HL,2050H

This instruction loads 205016 into register pair HL (2016 into Hand 5016 into L).

6. ADD A,(HL)

This instruction adds the memory byte addressed via register pair HL to the
accumulator. It does not affect either H or L.

148 Z80 ASSEMBLY LANGUAGE SUBROUTINES

7. ADDHL,HL

This instruction adds register pair HL to itself, thus shifting HL left 1 bit logically.
This instruction does not affect the accumulator or access data from memory.

CONFUSING ADDRESSES AND DATA

The rules to remember are

· LD requires an address when you want to move data to or from memory. That
address must be placed in parentheses.

· The standard assembler treats all operands as data unless they are enclosed in
parentheses. Thus, if you omit the parentheses around an address, the assembler will
treat it as a data item.

· DJNZ, JP, JR, and CALL always require addresses.

There is some confusion with addressing terminology in jump instructions. These
instructions essentially treat their operands as if one level of indirection had been
removed. For example, we say that JP 2040H uses direct addressing, yet we do not
place the address in parentheses. Furthermore, JP 2040H loads 204016 into the
program counter, much as LD HL,2040H loads 204016 into register pair HL. LD
HL,(2040H) loads the contents of memory locations 204016 and 204116 into register
pair HL. Note also that JP (HL) loads HL into the program counter; it does not use
HL indirectly or access the memory at all.

Examples

1. LD A,40H loads the number 4016 into the accumulator. LD A,(40H) loads the
contents of memory location 004016 into the accumulator.

2; LD HL,OCOOH loads OC00 16 into register pair HL (OCI6 into Hand 0016 into L).
LD HL,(OCOOH) loads the contents of memory locations OC0016 and OCOl16 into
register pair HL (the contents of OCOO16 into L and the contents of OCOl16 into H).

3. JP (xy) transfers control to the address in an index register. No indexing is
performed, nor is the address used to access memory.

Confusing addresses and their contents is a common error in handling data struc
tures. For example, the queue of tasks to be executed by a piece of test equipment
might consist of a block of information for each task. That block might contain

· Starting address of the test routine

· Number of seconds for which the test is to run

CHAPTER 3 COMMON PROGr<AMMING ERr<ORS 149

· Address in which the result is to be saved

· Upper and lower thresholds against which the result is to be compared

· Base address of the next block in the queue.

Thus, the block contains data, direct addresses, and indirect addresses. Typical
errors that a programmer could make are

· Transferring control to the memory locations containing the starting address of
the test routine, rather than to the actual starting address.

· Storing the result in the block rather than in the address specified in the block.

· Using a threshold as an address rather than as data.

· Assuming that the next block starts in the current block, rather than at the base
address given in the current block.

Jump tables are another common source of errors. The following are alternative
implementations:

· Form a table of jump instructions and transfer control to the correct element (for
example, to the third jump instruction).

· Form a table of destination addresses and transfer control to the contents of the
correct element (for example, to the address in the third element).

You will surely have problems if the processor uses jump instructions as addresses or
vice versa.

FORMAT ERRORS

The rules you should remember for the standard Z80 assembler are

· An H at the end of a number indicates hexadecimal and a B indicates binary.

· The default mode for numbers is decimal; that is, the assembler assumes all
numbers to be decimal unless they are specifically marked otherwise.

· All operands are treated as data unless they are enclosed in parentheses. Operands
enclosed in parentheses are assumed to be memory addresses.

· A hexadecimal number that starts with a letter digit (A, B, C, D, E, or F) must be
preceded by 0 (for example, OCFH instead of CFH) for the assembler to interpret it
correctly. Of course, the leading 0 does not affect the value of the number.

· All arithmetic and logical operations are binary, except DAA, which corrects the
result of an 8-bit binary addition or subtraction to the proper BCD value.

150 Z80 ASSEMBLY LANGUAGE SUBROUTINES

You should beware of the following common errors:

· Omitting the H from a hexadecimal operand. The assembler will assume it to be
decimal if it contains no letter digits and to be a name if it starts with a letter. The
assembler will indicate an error only if it cannot interpret the operand as either a
decimal number or a name.

· Omitting the B from a binary operand. The assembler will assume it to be decimal.

· Confusing decimal (BCD) representations with binary representations. Remem
ber, ten is not an integral power of two, so the binary and BCD representations are not
the same beyond nine. BCD constants must be designated as hexadecimal numbers,
not as decimal numbers.

· Confusing binary or decimal representations with ASCII representations. An
ASCII input device produces ASCII characters and an ASCII output device responds
to ASCII characters.

Examples

1. LD A,(2000)

This instruction loads the accumulator from memory address 200010 (07DOI6), not
address 200016. The assembler will not produce an error message, since 2000 is a valid
decimal number.

2. AND 00000011

This instruction logically ANDs the accumulator with the decimal number 11
(10112), not with the binary number 11 (310). The assembler will not produce an error
message, since 00000011 is a valid decimal number despite its unusual form.

3. ADD A,40

This instruction adds the number 4010 to the accumulator. Note that 4010 is not the
same as BCD 40, which is 4016; 4010 = 2816. The assembler will not produce an error
message, since 40 is a valid decimal number.

4. LD A,3

This instruction loads the accumulator with the number 3. If this value is now sent to
an ASCII output device, the device will respond as if it had received the character ETX
(0316), not the character 3 (3316)' The correct version is

LD ;GET AN ASCII 3

CHAPTER 3 COMMON PROGRAMMING ERi<ORS 151

If memory location 204016 contains a single digit, the sequence

LD A7 (2040H)
OUT (DEVCE)7A

will not print that digit on an ASCII output device. The correct sequence is

LD A7 (2040H) ;GET DECIMAL DIGIT
ADD A7'0' ;ADJUST TO ASCII
OUT (DEVCE)7A

If input port INDEV contains a single ASCII decimal digit, the sequence

IN A7 <INDEV)
LD (2040H)7A

will not store the actual digit in memory location 204016. Instead, it will store the
ASCII version, which is the actual digit plus 3016. The correct sequence is

IN A7 <INDEV)
SUB '-0--
LD (2040H) 7 A

;GET ASCII DIGIT
;ADJUST TO DECIMAL

Performing decimal arithmetic on the Z80 is awkward, since a DAA instruction is
required after each 8-bit addition or subtraction. Chapter 6 contains programs for
decimal arithmetic operations. Since DAA does not work properly after DEC or INC,
the following sequences are necessary to perform decimal increment and decrement
by 1:

. Add 1 to the accumulator in decimal.

ADD A71
DAA

. Subtract 1 from the accumulator in decimal.

SUB 1
DAA

or
ADD A7 99H
DAA

In the second alternative, Carry is an inverted borrow.

HANDLING ARRAYS INCORRECTLY

The most common problems here are executing an extra iteration or stopping one
short. Remember, memory locations BASE through BASE+N contain N+ 1bytes, not
N bytes. It is easy to forget the last entry or drop the first one. On the other hand, if you
have N entries, they will occupy memory locations BASE through BASE+N-l; now it
is easy to find yourself working beyond the end of the array.

152 Z80 ASSEMBLY LANGUAGE SUBROUTINES

IMPLICIT EFFECTS

Some implicit effects you should remember are

· The clearing of Carry by all logical operations except CPL.

· The moving of the interrupt flip-flop IFF2 to the Parity / Overflow flag by LD A,l
and LD A,R.

· The use of the data at the address in HL by the digit rotations RRD and RLD.

· The use of the memory address one larger than the specified one by LD
rp,(ADDR), LD (ADDR),rp, LD xy,(ADDR), and LD (ADDR),xy.

· The changing of the stack pointer by POP, PUSH, CALL, RET, RETI, RETN,
and RST.

· The saving of the return address in the stack by CALL and RST.

· The decrementing of register B by DJNZ.

The implicit effects on BC, DE, and HL of the block compare, input, move, and
output instructions.

· The use of the Parity / Overflow flag by LDD, LDI, CPD, CPDR, CPI, and CPIR
to indicate whether the counter in BC has been decremented to O.

Examples

1. AND 0000l1l1B

This instruction clears the Carry, as well as performing a logical operation.

2. LD A,I

This instruction not only loads the accumulator, but also moves the interrupt
flip-flop IFF2 to the Parity/Overflow flag. The interrupt status can then be saved
before the computer executes a routine that must run with interrupts disabled.

3. RRD

This instruction performs a 4-bit (digit) circular shift right involving the accumula
tor and the memory location addressed by HL. The results are

· The 4 least significant bits of A go into the 4 most significant bits of the memory
location.

· The 4 most significant bits of the memory location go into its 4 least significant
bits.

CHAPTER 3 COMMON PROGRAMMING ERRORS 153

. The 4 least significant bits of the memory location go into the 4 least significant
bits of A.

The result is thus a 4-bit right rotation of the 12-bit number made up of the 4 LSBs of
the accumulator and the memory byte.

4. LD HL,(16EFH)

This instruction loads register L from memory location 16EF16 and H from memory
location 16F016. Note the implicit use of address 16F016.

5. POP HL

This instruction not only loads register pair HL from memory, but also increments
the stack pointer by 2.

6. CALL SUBR

This instruction not only transfers control to address SUBR, but it also saves the
address of the next sequential instruction in the stack. Furthermore, CALL decre
ments the stack pointer by 2.

7. DJNZ LOOP

This instruction decrements register B and branches to address LOOP if the result is
not 0. Note that register B is implied as the counter.

8. LDD

This instruction moves data from the address in HL to the address in DE. It also
decrements BC, DE, and HL by 1. The ParityI Overflow flag (not the Zero flag) is
cleared (not set) if BC is decremented to 0; the ParityI Overflow flag is set otherwise.

9. CPIR

This instruction compares the accumulator with the memory byte at the address in
HL. After the comparison, it increments HL by 1 and decrements BC by I. It repeats
these operations until it decrements BC to °(indicated by the ParityIOverflow flag
being cleared) or until the comparison sets the Zero flag. Note that CPIR updates BC
and HL before it tests for an exit condition.

10. OUTI

This instruction transfers data from the memory address in HL to the output port in
C. It then decrements B (not BC) by 1and increments HL by I. OUTI sets the Zero flag
to 1 if it decrements BC to 0; it clears the Zero flag otherwise.

154 Z80 ASSEMBLY LANGUAGE SUBROUTINES

INITIALIZATION ERRORS

Initialization routines must perform the following tasks, either for the microcom
puter system as a whole or for particular routines:

· Load all RAM locations with initial values. This includes indirect addresses and
other temporary storage. You cannot assume that a memory location contains 0 just
because you have not used it.

· Load all registers and flags with initial values. Reset initializes the interrupt system
by disabling regular interrupts and selecting Mode O. The startup program for an
interrupt-driven system must set the interrupt mode (if it is not 0), initialize the stack
pointer, and load the interrupt vector register (in Mode 2).

· Initialize all counters and indirect addresses. Pay particular attention to register
pairs that are used as address registers; you must initialize them before using instruc
tions that refer to them indirectly.

ORGANIZING THE PROGRAM
INCORRECTLY

The following problems are the most common:

· Accidentally reinitializing a register, register pair, flag, memory location, counter,
or indirect address. Be sure that your branches do not result in the repetition of
initialization instructions.

· Failing to update a counter, index register, address register, or indirect address. A
problem here may be a path that branches around the updating instructions or changes
values before executing those instructions.

· Forgetting to save results. It is remarkably easy to calculate a result and then load
something else into the accumulator. Identifying this kind of error is frustrating and
time-consuming, since all the instructions that calculate the result work properly and
yet the result itself is being lost. For example, a branch may transfer control to an
instruction that writes over the result.

· Forgetting to branch around instructions that should not be executed in a particu
lar path. Remember, the computer will execute instructions consecutively unless told
to do otherwise. Thus, the computer may fall through to a section of the program that
you expect it to reach only via a branch. An unconditionaljump instruction will force a
branch around the section that should not be executed.

CHAPTER 3 COMMON Pi<OGRAMMING ERRORS 155

ERROR RECOGNITION BY ASSEMBLERS

Most assemblers will recognize some common errors immediately, such as

· Undefined operation code (usually a misspelling or the omission of a colon after a
label).

Undefined name (often a misspelling or an omitted definition).

· Illegal character (for example, a 2 in a binary number or a B in a decimal number).

· Illegal format (for example, an incorrect delimiter or the wrong operands).

· Illegal value (usually a number too large for 8 or 16 bits).

· Missing operand.

· Double definition (two different values assigned to one name).

· Illegal label (for example, a label attached to a pseudo-operation that does not
allow a label).

· Missing label (for example, on an EQU pseudo-operation that requires one).

These errors are annoying but easy to correct. The only problem comes when an
error (such as omitting the semicolon from a comment line) confuses the assembler
completely and results in a series of meaningless error messages.

There are, however, many simple errors that assemblers will not recognize. The
programmer should be aware that his or her program may contain such errors even if
the assembler does not report them. Typical examples are

· Omitted lines. Obviously, the assembler cannot tell that you have omitted a line
completely unless it contains a label or definition that is used elsewhere. The easiest
lines to omit are ones that are repetitious or seem unnecessary. Typical repetitions are
series of shifts, branches, increments, or decrements. Instructions that often appear
unnecessary include AND A, DEC HL, INC HL, OR A, and SUB A.

· Omitted designations. The assembler cannot tell if you meant an operand to be
hexadecimal or binary unless the omission results in an illegal character (such as C in a
decimal number). Otherwise, the assembler will assume all numbers to be decimal.
Problems occur with hexadecimal numbers that contain no letter digits (such as 44 or
2050) and with binary numbers (such as 00000110).

· Omitted parentheses. The assembler cannot tell if you meant to refer to a memory
address unless omitting the parentheses results in an error. Many instructions, such as
LD A,(40H), INC (HL), DEC (HL), and LD HL,(2050H), are also valid without
parentheses.

· Misspellings that are still valid. Typical examples are typing AND or ADC instead
of ADD, DI instead of EI, or D instead of E. Unless the misspelling is invalid, the

156 Z80 ASSEMBLY LANGUAGE SUBROUTINES

assembler has no way of sensing an error. Valid misspellings are often a problem if you
use names that look alike, such as XXX and XXXX, Ll21 and L112, or VARlI and
VARII.

· Designating instructions as comments. If you place a semicolon at the start of an
instruction line, the assembler will treat the line as a comment. This can be a perplexing
error, since the line appears in the listing but is not assembled into code.

Sometimes you can confuse an assembler by entering completely invalid instruc
tions. An assembler may accept them simply because its developer never anticipated
such mistakes. The results can be unpredictable, much like the result of accidentally
entering your weight instead of your age or your telephone number instead of your
credit card number on a form. Some cases in which a Z80 assembler can go wrong are

· If you specify a single register instead of a register pair. Some assemblers will
accept instructions like LD A,(L), ADD HL,D, or LD E,2040H. They will produce
meaningless object code without any indication of error.

· Ifyou enter an invalid digit, such as X in a decimal or hexadecimal number or 7 in
a binary number. Some assemblers will assign arbitrary values to such invalid digits.

· Ifyou enter an invalid operand such as 40H in RST, AF in LD, or SP in PUSH or
POP. Some assemblers will accept these and generate meaningless code.

The assembler will only recognize errors that its developer anticipated. Pro
grammers are often able to make mistakes the developer never imagined, much as
automobile drivers are often capable of getting into predicaments that no highway
engineer or traffic policeman ever thought possible. Note that only a line-by-line hand
checking of the program will find errors that the assembler does not recognize.

COMMON ERRORS IN I/O DRIVERS

Since most errors in 110 drivers involve both hardware and software, they are
difficult to categorize. Some things you should watch for are

· Confusing input ports and output ports. Input port 2016 and output port 2016 are
different in most systems. Even when the two ports are the same physically, it may still
be impossible to read back output data unless the port is latched and buffered.

· Attempting to perform operations that are physically impossible. Reading data
from an output device (such as a display) or sending data to an input device (such as a
keyboard) makes no physical sense. However, accidentally using the wrong port
number will cause no assembly errors; the port, after all, exists and the assembler has
no way of knowing that certain operations cannot be performed on it. Similarly, a
program may attempt to save data in an unassigned address or in a ROM.

CHAPTER 3 COMMON PROGRAMMING ERRORS 157

· Forgetting implicit hardware effects. At times, transferring data to or from a port
will change the status lines automatically (as in most PIO modes). Even reading or
writing the port while debugging a program will change status lines. When using
memory-mapped 110, be particularly careful of instructions like comparisons and BIT
that read a memory address even though they do not change any registers. Similarly,
instructions like BIT, RES, SET, DEC, INC, and shifts can both read and write a
memory address. Automatic port operations can save parts and simplify programs, but
you must remember how they work and when they occur.

· Reading or writing without checking status. Many devices can only accept or
provide data when a status line indicates they are ready. Transferring data to or from
them at other times will have unpredictable results.

· Ignoring the differences between input and output. Remember that an input device
normally starts out not ready - it has no data available although the computer is ready
to accept data. On the other hand, an output device normally starts out ready - that is,
it could accept data but the computer usually has none to send it. In many situations
(particularly when using PIOs), you may have to send a null character (something that
has no effect) to each output port just to change its state from ready to not ready
initially.

· Failing to keep a copy of output data. Generally, you will not be able to read data
back from an output port. You must save a copy in memory if it could be needed later to
repeat a transmission, change some bits, or restore interrupt status (the data could, for
example, be the current priority level).

· Reading data before it is stable or while it is changing. Be sure that you understand
exactly when the data from the input device is guaranteed to be stable. In the case of
switches that may bounce, you may want to sample them twice (more than a debounc
ing time apart) before taking any action. In the case of keys that may bounce, you may
want to take action only when they are released rather than when they are pressed.
Acting on release also forces the operator to release the key rather than holding it
down. In the case of persistent data (such as in serial 110), you should center the
reception (that is, read the data near the centers of the pulses rather than at the edges
where the values may be changing).

· Forgetting to reverse the polarity of data being transferred to or from devices that
operate in negative logic. Many simple 110 devices, such as switches and displays, use
negative logic; a' logic 0 means that a switch is closed or a display is lit. Common
ten-position switches or dials also often produce data in negative logic, as do many
encoders. The solution is simple-complement the data using CPL after reading it or
before sending it.

· Confusing actual II°ports with registers that are inside 110 chips. Programmable
110 devices, such as the CTC, PIO, and SIO, typically have control or command
registers that determine how the device operates and status registers that reflect the

158 Z80 ASSEMBLY LANGUAGE SUBROUTINES

current state of the device or the transfer. These registers are inside the chips; they are
not connected to peripherals. Transferring data to or from these registers is not the
same as transferring data to or from actual 110 ports.

· Using bidirectional ports improperly. Many devices, such as the PIO, have bidirec
tional 110 ports that can be used either for input or output. Normally, resetting the
computer makes these ports inputs in order to avoid initial transients, so the program
must explicitly change them to outputs if necessary. Be particularly careful of instruc
tions that read bits or ports that are designated as outputs or that write into bits or
ports designated as inputs. The only way to determine what will happen is to read the
documentation for the specific device.

· Forgetting to clear status after performing an 110 operation. Once the processor
has read data from a port or written data into a port, that port should revert to the not
ready state. Some 110 devices change the status of their ports automatically after input
or output operations, but others either do not or they change status automatically only
after input. Leaving the status set can result in an endless loop or erratic operation.

COMMON ERRORS IN INTERRUPT
SERVICE ROUTINES

Many errors that are related to interrupts involve both hardware and software. The
following are some of the more common mistakes:

· Failing to reenable interrupts. The Z80 disables interrupts automatically after
accepting one, but does not reenable interrupts unless it executes EI.

· Failing to save registers. The Z80 does not automatically save any registers except
the program counter, so any registers that the service routine uses must be saved
explicitly in the stack.

· Saving or restoring registers in the wrong order. Registers must be restored in the
opposite order from that in which they were saved.

· Enabling interrupts before initializing modes, priorities, the interrupt vector
register, or other parameters of the interrupt system.

· Forgetting that the response to an interrupt includes saving the program counter
at the top of the stack. The return address will thus be on top of whatever else is in the
stack.

· Not disabling the interrupt during multi-byte transfers or instruction sequences
that cannot be interrupted. In particular, watch for possible partial updating of data
(such as time) that a service routine may use.

CHAPTER 3 COMMON PROGRAMMING Er<Ror<s 159

· Failing to reenable interrupts after a sequence that must be run with interrupts
disabled. One problem here is that interrupts should not be enabled afterward if they
were not enabled originally. This requirement is difficult to meet on the Z80 since its
interrupt enable is not directly readable. The only way to access the interrupt flip-flop
is by executing LD A,I or LD A,R; either instruction moves the interrupt flip-flop to
the ParityI Overflow flag.

· Failing to clear the signal that caused the interrupt. The service routine must clear
the interrupt even if no 110 operations are necessary. For example, even when the
processor has no data to send to an interrupting output device, it must nonetheless
either clear or disable the interrupt. Otherwise, the processor will get caught in an
endless loop. Similarly, a real-time clock will typically require no servicing other than
an updating of time, but the service routine still must clear the clock interrupt. This
clearing may involve reading a timer register.

· Failing to communicate with the main program. The main program will not know
that the interrupt has been serviced unless it is informed explicitly. The usual way to
inform the main program is to have the service routine change a flag. The main
program can tell from the flag's value whether the service routine has been executed.
This procedure works like a postal patron raising a flag to indicate that there is mail to
be picked up. The letter carrier lowers the flag after picking up the mail. Note that this
simple procedure means that the main program must examine the flag often enough to
avoid missing changes in its value. Of course, the programmer can always provide a
buffer that can hold many data items.

· Failing to save and restore priority. The priority of an interrupt is often held in a
write-only register or in a memory location. That priority must be saved just like a
CPU register and restored properly at the end of the service routine. If the priority
register is write-only, a copy of its contents must be saved in memory.

REFERENCES

1. Duncan, EG., "Level-Independent Notation for Microcomputer Programs,"
IEEE Micro, May 1981, pp. 47-52.

Introduction to the
Program Section

The program section contains sets of assembly language subroutines for the Z80
microprocessor. Each subroutine is documented with an introductory section and
comments and is followed by at least one example of its use. The introductory material
contains the following information about the purpose of the routine: its procedure and
the registers that are used; the execution time, program size, and data memory
required for the routine; as well as special cases, entry conditions, and exit conditions.

We have made each routine as general as possible. This is particularly difficult for
the inputl output (II 0) and interrupt service routines described in Chapters 10 and 11,
since these routines are always computer-dependent in practice. In such cases, we have
limited the computer-dependence to generalized input and output handlers and inter
rupt managers. We have drawn specific examples from computers based on the CP1M
operating system, but the general principles are applicable to other Z80-based com
puters as well.

In all routines, we have used the following parameter passing techniques:

1. A single 8-bit parameter is passed in the accumulator. A second 8-bit parameter is
passed in register B, and a third in register C.

2. A single 16-bit parameter is passed in register pair HL with the more significant
byte in H. A second 16-bit parameter is passed in register pair DE with the more
significant byte in D.

3. Large numbers of parameters are passed in the stack, either directly or indirectly.
We assume that subroutines are entered via a CALL instruction that places the return
address at the top of the stack, and hence on top of the parameters.

Where there has been a choice between execution time and memory usage, we have
generally chosen to minimize execution time. We have therefore avoided slowly
executing instructions such as stack transfers and instructions that use the index
registers, even when they would make programs shorter. However, we have used

161

162 Z80 ASSEMBLY LANGUAGE SUBROUTINES

relative jumps whenever possible rather than the slightly faster but longer absolute
jumps to make programs easier to relocate.

We have also chosen the approach that minimizes the number of repetitive calcula
tions. For example, in the case of array indexing, the number of bytes between the
starting addresses of elements differing only by one in a particular subscript (known as
the size of that subscript) depends only on the number of bytes per element and the
bounds of the array. Thus, the sizes ofthe various subscripts can be calculated as soon
as the bounds of the array are known; the sizes are therefore used as parameters for the
indexing routines, so that they need not be calculated each time a particular array is
indexed.

As for execution time, we have specified it for most short routines. For longer
routines we have given an approximate execution time. The execution time of pro
grams involving many branches will obviously depend on which path the computer
follows in a particular case. This is further complicated for the Z80 because condi
tionaljump instructions themselves require different numbers of clock cycles depend
ing on whether the branch is taken. Thus, a precise execution time is often impossible
to define. The documentation always contains at least one typical example showing an
approximate or maximum execution time.

Although we have drawn examples from CP/ M-based systems, we have not made
our routines compatible with the 8080 or 8085 processors. Readers who need routines
that can run on any of these processors should refer to the 8080/8085 version of this
book. We have considered the Z80 as an independent processor and have taken
advantage of such features as block moves, block compares, loop control instructions,
and relative jumps.

Our philosophy on error indicators and special cases has been the following:

1. Routines should provide an easily tested indicator (such as the Carry flag) of
whether any errors or exceptions have occurred.

2. Trivial cases, such as no elements in an array or strings of zero length, should
result in immediate exits with minimal effect on the underlying data.

3. Incorrectly specified data (such as a maximum string length of zero or an index
beyond the end of an array) should result in immediate exits with minimal effect on the
underlying data.

4. The documentation should include a summary of errors and exceptions (under
the heading of "Special Cases").

5. Exceptions that may actually be convenient for the user (such as deleting more
characters than could possibly be left in a string rather than counting the precise
number) should be handled in a reasonable way, but should still be indicated as errors.

Obviously, no method of handling errors or exceptions can ever be completely
consistent or well-suited to all applications. And rather than assume that the user will

INTRODUCTION TO THE PROGRAM SECTION 163

always provide data in the proper form, we believe a reasonable set of subroutines
must deal with this issue.

The subroutines are listed as follows:

Code Conversion

4A Binary to BCD Conversion 167

4B BCD to Binary Conversion 170

4C Binary to Hexadecimal ASCII Conversion 172

4D Hexadecimal ASCII to Binary Conversion 175

4E Conversion of a Binary Number to Decimal ASCII 178

4F Conversion of ASCII Decimal to Binary 183

4G Lower-Case to Upper-Case Translation 187

4H ASCII to EBCDIC Conversion 189

41 EBCDIC to ASCII Conversion 192

Array Manipulation and Indexing

5A Memory Fill 195

5B Block Move 198

5C Two-Dimensional Byte Array Indexing 201

5D Two-Dimensional Word Array Indexing 205

5E N-Dimensional Array Indexing 209

Arithmetic

6A 16-Bit Multiplication 217

6B 16-Bit Division 220

6C 16-Bit Comparison 225

6D Multiple-Precision Binary Addition 228

6E Multiple-Precision Binary Subtraction 231

6F Multiple-Precision Binary Multiplication 234

6G Multiple-Precision Binary Division 239

164 ZSO ASSEMBLY LANGUAGE SUBROUTINES

6H Multiple-Precision Binary Comparison 245

61 Multiple-Precision Decimal Addition 248

6J Multiple-Precision Decimal Subtraction 251

6K Multiple-Precision Decimal Multiplication 254

6L Multiple-Precision Decimal Division 260

6M Multiple-Precision Decimal Comparison 266

Bit Manipulations and Shifts

7A Bit Field Extraction 267

7B Bit Field Insertion 270

7C Multiple-Precision Arithmetic Shift Right 273

7D Multiple-Precision Logical Shift Left 276

7E Multiple-Precision Logical Shift Right 279

7F Multiple-Precision Rotate Right 282

7G Multiple-Precision Rotate Left 285

String Manipulation

8A String Compare 288

8B String Concatenation 292

8C Find the Position of a Substring 297

8D Copy a Substring from a String 302

8E Delete a Substring from a String 308

8F Insert a Substring into a String 313

Array Operations

9A 8-Bit Array Summation 319

9B l6-Bit Array Summation 322

9C Find Maximum Byte-Length Element 325

9D Find Minimum Byte-Length Element 328

9E Binary Search 331

INTRODUCTIO~~ TO THE PROGRAM SECTION 165

9F Quicksort 336

9G RAM Test 347

9H Jump Table 352

Input/Output

lOA Read a Line from a Terminal 356

lOB Write a Line to an Output Device 365

lOC CRC-16 Checking and Generation 368

lOD I/O Device Table Handler 373

WE Initialize I/O Ports 385

lOF Delay Milliseconds 391

Interrupts

IIA Unbuffered Input/Output Using an SIO 394

liB Unbuffered Input/Output Using a PIO 404

IIC Buffered Input/Output Using an SIO 413

II D Real-Time Clock and Calendar 425

Binary to BCD Conversion (BN2BCD) 4A

Converts one byte of binary data to two bytes
of BCD data.

Procedure: The program subtracts 100 repeat
edly from the original data to determine the
hundreds digit, then subtracts 10 repeatedly
from the remainder to determine the tens digit,
and finally shifts the tens digit left four positions
and combines it with the ones digit.

Entry Conditions

Binary data in A

Examples

Registers Used: AF; C, HL

Execution Time: 497 cycles maximum; depends on
the number of subtractions required to determine the
tens and hundreds digits

Program Size: 27 bytes

Data Memory Required: None

Exit Conditions

Hundreds digit in H
Tens and ones digits in L

L Data:

Result:

(A) = 6E I6 (Ito decimal)

(H) = 01 16 (hundreds digit)
(L) = 10 16 (tens and ones digits)

2. Data:

Result:

(A) B7 16 (183 decimal)

(H) = 01 16 (hundreds digit)
(L) = 83 16 (tens and ones digits)

Title
Name:

Binary to BCD conversion
BN2BCD

Put-pose: Convet-t one byte of binat-y data tCI two
bytes clf BCD data

Enh-y: Reg i stet- A binat-y data

Exit: Register H High byte clf BCD data
Registet- L L,:,W byte of BCD data

Registet-s used: AF,C,HL

167

168 CODE CONVERSION

Time:

Size:

BN2BCD:

497 cycles maximum

F'r-ogr-am 27 bytes

;CALCULATE 100'S DIGIT - DIVIDE BY 100
; H QUOTIENT
; A REMAINDER
LD H,OFFH ;START QUOTIENT AT -1

;CALCULATE 10'S AND l'S DIGITS
; DIVIDE REMAINDER OF THE 100'S DIGIT BY 10
; L 10"'S DIGIT
; A l"'S DIGIT
LD L,OFFH ;START QUOTIENT AT -1

Dl00LF':

Dl0LF':

INC
SUB
.JR
ADD

INC
::;UB
.JR
ADD

H
100
NC,Dl00LF'
A,100

L
10
NC,Dl0LP
A,10

;ADD 1 TO QUOTIENT
;SUBTRACT 100
:JUMP IF DIFFERENCE STILL POSITIVE
;ADD THE LAST 100 BACK

;ADD 1 TO QUOTIENT
:SlIBTRACT 10
:JlIMP IF DIFFERENCE STILL POSITIVE
;ADD THE LAST 10 BACK

SC4A:

; COMBINE l"'S AND 10"'S DIGITS
LD C,A ; SAVE 1'" DIGIT IN C.:;.

LD A,L
RLCA ; MOVE 10"':;:; TO HIGH NIBBLE OF A
RLCA
RLCA
RLCA
OR C ;OR IN THE 1":;:; DIGIT

; RETURN WITH L LOW BYTE, H = HIGH BYTE
LD L,A
RET

SAMPLE EXECUTION:

;CONVERT OA HEXADECIMAL TO 10 BCD
LD A,OAH
CALL BN2BCD ;H = 0, L 10H

;CONVERT FF HEXADECIMAL TO 255 BCD

LD
CALL

A,OFFH
BN2BCD

4A BINARY TO BCD CONVERSION (BN2BCD) 169

;H = 02H, L 55H

;CONVERT 0 HEXADECIMAL TO 0 BCD
LD A,O
CALL BN2BCD ;H = 0, L 0

.JR SC4A

END

BCD to Binary Conversion (BCD2BN) 4B

Converts one byte of BCD data to one byte
of binary data.

Procedure: The program masks off the more
significant digit, multiplies it by 10 using shifts
00=8+2, and multiplying by 8 or by 2 is equiv
alent to three or one left shifts, respectively).
Then the program adds the product to the less
significant digit.

Entry Conditions

BCD data in A

Examples

Registers Used: AF, Be

Execution Time: 60 cycles

Program Size: 14 bytes

Data Memory Required: None

Exit Conditions

Binary data in A

L Data:

Result:

(A) = 99 16

(A) = 6.3 16 99 10

Title
Name:

2. Data:

Result:

BCD to binary conversion
BCD2BN

(A) 23 16

(A) = 17 16 = 2.3 10

Put"pose: Convert one byte of BCD data to one
byte of binary data

Ent r"y:

Exit:

Register- A

Register- A

BCD data

Binar"y data

Registers used: A,B,C,F

170

Time: 60 cycles

4B BCD TO BINARY CONVERSION (BCD2BN) 171

Size:

BCD2BN:
;MULTIPLY UPPER NIBBLE BY 10 AND SAVE IT
; UPPER
LD
AND
RRCA
LD
RRCA
RRCA
ADD
LD

NIBBLE * 10 =
B,A
OFOH

C,A

A,C
C,A

UPPER NIBBLE * (8 + 2)
;SAVE ORIGINAL BCD VALUE IN B
;MASK OFF UPPER NIBBLE
;SHIFT RIGHT 1 BIT
;C = UPPER NIBBLE * 8
;SHIFT RIGHT 2 MORE TiMES
;A UPPER NIBBLE * 2

;C = UPPER NIBBLE * (8+2)

SCAB:

;GET LOWER NIBBLE AND ADD IT TO THE
; BINARY EQUIVALENT OF THE UPPER NIBBLE
LD A,B ;GET ORIGINAL VALUE BACK
AND OFH ;MASK OFF UPPER NIBBLE
ADD A,C ;ADD TO BINARY UPPER NIBBLE
RET

SAMPLE EXECUTION:

;CONVERT 0 BCD TO 0 HEXADECIMAL
LD A,O
CALL BCD2BN ;A = OH

;CONVERT 99 BCD TO 63 HEXADECIMAL
LD A,099H
CALL BCD2BN ;A=63H

;CONVERT 23 BCD TO 17 HEXADECIMAL
LD A,23H
CALL BCD2BN ;A=17H

..JR SC4B

END

Binary to Hexadecimal ASCII
Conversion (BN2HEX) 4C

Converts one byte of binary data to two
ASCII characters corresponding to the two
hexadecimal digits.

Procedure: The program masks off each hexa
decimal digit separately and converts it to its
ASCII equivalent. This involves a simple addi
tion of 3016 if the digit is decimal. If the digit is
non-decimal, an additional 7 must be added to

Entry Conditions

Binary data in A

Examples

Registers Used: AF, B, HL

Execution Time: 162 cycles plus two extra cycles for
each non-decimal digit

Program Size: 28 bytes

Data Memory Required: None

account for the break between ASCII 9 (3916)

and ASCII A (4116).

Exit Conditions

ASCII version of more significant hexadecimal
digit in H

ASCII version of less significant hexadecimal
digit in L

I. Data:

Result:

(A) = FB I6

(H) = 46 16 (ASCII F)
(L) = 42 16 (ASCII B)

Title
Name:

2. Data:

Result:

Binary to hex ASCII
BN2HEX

(A) = 59 16

(H) = 35 16 (ASCII 5)
(L) 39 16 (ASCII 9)

172

Put-pose:

Entt"Y:

Convert one byte of binary data to
two ASCII characters

Register A = Binary data

Exit:

4C BINARY TO HEXADECIMAL ASCII CONVERSION (BN2HEX) 173

Register H = ASCII more significant digit
Register L ASCII less significant digit

Time:

Size:

Approximately 162 cycles

F't"Clgt"am 28 bytes

BN2HEX:
;CONVERT HIGH NIBBLE
LD B,A
AND OFOH
RRCA
RRCA
RRCA
RRCA
CALL NASCII
LD H,A

;CONVERT LOW NIBBLE
L.D A,B
AND OFH
CALL NASeII
LD L,A
RET

;SAVE ORIGINAL BINARY VALUE
;GET HIGH NIBBLE
;MOVE HIGH NIBBLE TO LOW NIBBLE

;CONVERT HIGH NIBBLE TO ASCII
;RETURN HIGH NIBBLE IN H

;GET LOW NIBBLE
;CONVERT LOW NIBBLE TO ASCII
;RETURN LOW NIBBLE IN L

.--------------------------------~--,
;SUBROUTINE ASCII
;F'URPOSE: CONVERT A HEXADECIMAL DIGIT TO ASCII
;ENTRY: A = BINARY DATA IN L.OWER NIBBLE
;EXIT: A = ASCII CHARACTER
;REGISTERS USED: A,F
-----------------------------------,

NASCII:

NASi:

CP
..JR
ADD

ADD
RET

10
C,NASI
A,7

;..JUMP IF HIGH NIBBLE < 10
;ELSE ADD 7 SO AFTER ADDING 'O~ THE
; CHARACTER WILL BE IN /A' .. 'F~

;ADD ASCII 0 TO MAKE A CHARACTER

SC4C:

SAMPLE EXECUTION:

;CONVERT 0 TO '00'
LD A,O

174 CODE CONVERSION

CALL BN2HEX ;H='O'=30H, L='O'=30H

;CONVERT FF HEX TO 'FF'
LD A,OFFH
CALL BN2HEX ;H='F'=46H, L='F'=46H

;CONVERT 23 HEX TO '23'
LD A,23H
CALL BN2HEX ;H='2'=32H, L='3'=33H

.,JR SC4C

END

Hexadecimal ASCII to Binary
Conversion (HEX2BN) 4D

Converts two ASCII characters (represent
ing two hexadecimal digits) to one byte of
binary data.

Procedure: The program converts each ASCII
character separately to a hexadecimal digit. This
involves a simple subtraction of 3016 (ASCII 0)
if the digit is decimal. If the digit is non-decimal,
another 7 must be subtracted to account for the
break between ASCII 9 (3916) and ASCII A
(4116)' The program then shifts the more signif
icant digit left four bits and combines it with the

Entry Conditions

More significant ASCII digit in H, less signifi
cant ASCII digit in L

Examples

Registers Used: AF, B

execution Time: 148 cycles plus two extra cycles for
each non-decimal digit

Program Size: 24 bytes

Data Memory Required: None

less significant digit. The program does not
check the validity of the ASCII characters (that
is, whether they are indeed the ASCII represen
tations of hexadecimal digits).

Exit Conditions

Binary data in A

1. Data: (H) = 44 16 (ASCII D)
(L) = 37 16 (ASCII 7)

Result: (A) = 07 16

2. Data:

Result:

(H) = 31 16 (ASCII 1)
(L) = 42 16 (ASCII B)

(A) = IB I6

Tit Ie
Name:

Put-pose:

Hex ASCII to binary
HEX2BN

Convert two ASCII characters to one
byte of binary data

Register H = ASCII more significant digit

175

176 CODE CONVERSION

Register L = ASCII less significant digit

Exit: Register- A Binar-y data

Register-s used: AF, B

HEX2E:N:

Time:

Size:

LD
CALL
LD
LD
CALL
RReA
RRCA
RRCA
RRCA
OR
RET

A,L
A2HEX
B,A
A,H
A2HEX

B

Approximately 148 cycles

;GET LOW CHARACTER
;CONVERT IT TO HEXADECIMAL
;SAVE HEX VALUE IN B
;GET HIGH CHARACTER
;CONVERT IT TO HEXADECIMAL
;SHIFT HEX VALUE TO UPPER 4 BITS

;OR IN LOW HEX VALUE

._----~--------------------------------,
; SUBROUTINE: A2HEX
; PURPOSE: CONVERT ASCII DIGIT TO A HEX DIGIT
: ENTRY: A = ASCII HEXADECIMAL DIGIT
;EXIT: A = BINARY VALUE OF ASCII DIGIT
;REGISTERS USED: A,Fa _

,
A2HEX:

A2HEX1:

SUB
CP
..JR
SUB

RET

""0'"
10
C,A2HEXI
7

;SUBTRACT ASCII OFFSET

;BRANCH IF A IS A DECIMAL DIGIT
;ELSE SUBTRACT OFFSET FOR LETTERS

SC4D:

SAMPLE EXECUTION:

;CONVERT ~C7~ TO C7 HEXADECIMAL
LD H, "C"
LD L, "7'"
CALL HEX2BN ;A=C7H

;CONVERT ~2F~ TO 2F HEXADECIMAL
LD H, "2"'
LD L, ~F"

CALL HEX2BN

4D HEXADECIMAL ASCII TO BINArN CONVERSION (HEX2BN) 177

;A=2FH

;CONVERT '2A' TO 2A HEXADECIMAL
LD H. -'2'"
LD L. -'A"-
CALL HEX2BN ;A=2AH

...IR SC4D

END

Conversion of a Binary Number to
Decimal ASCII (BN2DEC) 4E

Converts a 16-bit signed binary number into
an ASCII string. The string consists of the
length of the number in bytes, an ASCII minus
sign (if needed), and the ASCII digits. Note that
the length is a binary number, not an ASCII
number.

Procedure: The program takes the absolute
value of the number if it is negative. The program
then keeps dividing the absolute value by 10
until the quotient becomes O. It converts each
digit of the quotient to ASCII by adding ASCII 0
and concatenates the digits along with an ASCII

Entry Conditions

Base address of output buffer in HL
Value to convert in DE

Examples

I. Data: Value to convert = 3EB7 16

Result (in output buffer):

05 (number of bytes in buffer)
31 (ASCII I)
36 (ASCII 6)
30 (ASCII 0)
35 (ASCII 5)
35 (ASCII 5)
That is, 3EB716 = 16055 10

178

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 7200 cycles

Program Size: 107 bytes

Data Memory Required: Four bytes anywhere in
memory for the buffer pointer (two bytes starting at
address BUFPTR), the length of the buffer (one byte
at address CURLEN), and the sign of the original
value (one byte at address NGFLAG). This data
memory does not include the output buffer which
should be seven bytes long.

minus sign (in front) if the original number was
negative.

Exit Conditions

Order in buffer:

Length ofthe string in bytes (a binary number)
ASCII (if original number was negative)
ASCII digits (most significant digit first)

2. Data: Value to convert = FFC8 16

Result (in output buffer):

03 (number of bytes in buffer)
2D (ASCII-)
35 (ASCII 5)
36 (ASCII 6)
That is, FFC8 16 =-56 10, when considered as a

signed two's complement number

Tit Ie
Name:

4E CONVERSION OF A BINARY NUMBER TO DECIMAL ASCII

Binary to decimal ASCII
BN2DEC

Convert a 16-bit signed binary number
to ASCII data

179

Registet- H
Registet- L
Registet- D
Register E

High byte of output buffer address
Low byte of output buffer address
High byte of value to convert
Low byte of value to convert

Exit: The first byte of the buffer is the length.
followed by the characters.

Registers usedt AF.BC.DE.HL

Time:

Size:

Approximately 7.200 cycles

Program 107 bytes
Data 4 bytes

BN2DEC:
; SAVE
LD
EX
LD
LD
LD
LD
OR
,..IP
EX
LD
OR
SBC

PARAMETERS
(BUFPTRl.HL
DE,HL
A.O
(CURLENl.A
A,H
(NGFLAGl,A
A
P,CNVERT
DE,HL
HL,O
A
HL,DE

;STORE THE BUFFER POINTER

;CURRENT BUFFER LENGTH IS 0

;SAVE SIGN OF VALUE
;SET FLAGS FROM VALUE
;JUMP IF VALUE IS POSITIVE
;ELSE TAKE ABSOLUTE VALUE (0 - VALUE)

;CLEAR CARRY
;SUBTRACT VALUE FROM 0

;CONVERT VALUE TO A STRING
CNVERT:

;HL := HL DIV 10
; DE := HL MOD 10
LD E,O
LD B.16
OR A

DVLOOP:

(DIVIDEND. QUOTIENT)
(REMAINDER)

;REMAINDER = 0
;16 BITS IN DIVIDEND
;CLEAR CARRY TO START

;SHIFT THE NEXT BIT OF THE QUOTIENT INTO BIT 0 OF THE DIVIDEND
;SHIFT NEXT MOST SIGNIFICANT BIT OF DIVIDE~D INTO

180 CODE CONVERSION

; LEAST SIGNIFICANT BIT OF REMAINDER
;HL HOLDS BOTH DIVIDEND AND QUOTIENT. QUOTIENT IS SHIFTED
; IN AS THE DIVIDEND IS SHIFTED OUT.
;E IS THE REMAINDER.

;DO A 24-BIT SHIFT LEFT, SHIFTING
, CARRY TO L, L TO H, H TO E
RL L ;CARRY (NEXT BIT OF QUOTIENT) TO BIT 0
RL H ;SHIFT HIGH BYTE
RL E ;SHIFT NEXT BIT OF DIVIDEND

;SUBTRACT 10 FROM REMAINDER
;COMPLEMENT CARRY
; (THIS IS NEXT BIT OF QUOTIENT)
;..JUMP IF REMAINDER IS LESS THAN 10
;OTHERWISE REMAINDER = DIFFERENCE
; BETWEEN PREVIOUS REMAINDER AND 10

NC,DECCNT
E,A

;IF REMAINDER IS 10 OR MORE, NEXT BIT OF
, QUOTIENT IS 1 (THIS BIT IS PLACED IN CARRY)
LD A,E
SUB 10
CCF

..JR
LD

DECCNT:
D,JNZ DVLOOP ;CONTINUE UNTIL ALL BITS ARE DONE

;SHIFT LAST CARRY INTO QUOTIENT
RL L ;LAST BIT OF QUOTIENT TO BIT 0
RL H

; INSERT THE NEXT CHARACTER IN ASCII
CHINS:

LD
ADD
CALL

A,E
A, '-(1'-

INSERT
;CONVERT 0 .•. 9 TO ASCII '0' .•• '9'

;IF QUOTIENT IS NOT 0 THEN KEEP DIVIDING
LD A,H
OR L
..JR NZ,CNVERT

EXIT:
LD
OR
..JP
LD
CALL

A, (NGFLAGl
A
P,POS
A, .-_.-
INSERT

;BRANCH IF ORIGINAL VALUE WAS POSITIVE
; ELSE
; PUT A MINUS SIGN IN FRONT

POS:
RET ; RETURN

4E CONVERSION OF A BINARY NUMBER TO DECIMAL ASCII (BN2DEC) 181

----------------------------------,
; SUBROUTINE: INSERT
; PURPOSE: INSERT THE CHARACTER IN REGISTER A AT THE

FRONT OF THE BUFFER
; ENTRY: CURLEN = LENGTH OF BUFFER

BUFPTR = CURRENT ADDRESS OF LAST CHARACTER IN BUFFER
;EXIT: REGISTER A INSERTED IMMEDIATELY AFTER LENGTH BYTE
;REGISTERS USED: AF,B,C,D,E
;---------------------------------

INSERT:
PUSH
PUSH

; MOVE
LD
LD
LD
INC
LD
LD
OR
.JR

LD
LD
LDDR

EXITMR:
LD
INC
LD
LD
EX
POP
LD
POP
RET

; DATA
BUFPTR: DS
CURLEN: DS
NGFLAG: DS

HL
AF

ENTIRE BUFFER
HL, (BUFPTR)
D,H
E,L
DE
(BUFPTR),DE
A, (CURLEN)
A
Z,EXITMR

C,A
E,O

A, (CURLEN)
A
(CURLEN),A
(HL),A
DE,HL
AF
(HL), A
HL

2
1
1

;SAVE HL
;SAVE CHARACTER TO INSERT

UP 1 BYTE IN MEMORY
;GET BUFFER POINTER
;HL = SOURCE (CURRENT END OF BUFFER)

;DE = DESTINATION (CURRENT END + 1)
;STORE NEW BUFFER POINTER

;TEST FOR CURLEN = 0
;JUMP IF ZERO (NOTHING TO MOVE,
; JUST STORE THE CHARACTER)
;BC = LOOP COUNTER

;MOVE ENTIRE BUFFER UP 1 BYTE

; INCREMENT CURRENT LENGTH BY 1

;UPDATE LENGTH BYTE OF BUFFER
;HL POINTS TO FIRST CHARACTER IN BUFFER
;GET CHARACTER TO INSERT
; INSERT CHARACTER AT FRONT OF BUFFER
;RESTORE HL

;ADDRESS OF LAST CHARACTER IN BUFFER
;CURRENT LENGTH OF BUFFER
;SIGN OF ORIGINAL VALUE

SAMPLE EXECUTION:

SC4E:
;CONVERT 0 TO /0/
LD HL,BUFFER
LD DE,O
CALL BN2DEC

;HL = BASE ADDRESS OF BUFFER
;DE = 0
; CONVERT
; BUFFER SHOULD = /0'

182 CODE CONVERSION

;CONVERT 32767 TO
LD HL,BUFFER
LD DE, 32767
CALL BN2DEC

"32767"
;HL = BASE ADDRESS OF BUFFER
;DE = 32767
; CONVERT
; BUFFER SHOULD = '32767'

;CONVERT -32768 TO
LD HL,BUFFER
LD DE,-32768
CALL BN2DEC
.JR SC4E

"-32768"
;HL = BASE ADDRESS OF BUFFER
;DE = -32768
; CONVERT
; BUFFER SHOULD '-32768'

BUFFER: DS

END

7 ;7-BYTE BUFFER

Conversion of ASCII Decimal to
Binary (DEC2BN) 4F

Converts an ASCII string consisting of the
length of the number (in bytes), a possible
ASCII - or + sign, and a series of ASCII digits
to two bytes of binary data. Note that the length
is an ordinary binary number, not an ASCII
number.

Procedure: The program sets a flag if the first.
ASCII character is a minus sign and skips over a
leading plus sign. It then converts each subse
quent digit to decimal by subtracting ASCII 0,
multiplies the previous digits by 10 (using the
fact that 10 = 8+ 2, so a multiplication by 10 can
be reduced to left shifts and additions), and adds
the new digit to the product. Finally, the pro
gram subtracts the result from 0 if the original
number was negative. The program exits imme
diately, setting the Carry flag, if it finds some-

Entry Conditions

Base address of string in HL

Examples

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 152 cycles per byte
plus a maximum of 186 cycles overhead

Program Size: 79 bytes

Data Memory Required: One byte anywhere in
RAM (address NGFLAG) for a flag indicating the
sign of the number

Special Cases:
I. If the string contains something other than a

leading sign or a decimal digit, the program returns
with the Carry flag set to I. The result in HL is
invalid.

2. If the string contains only a leading sign
(ASCII + or ASCII -), the program returns with
the Carry flag set to I and a result of O.

thing other than a leading sign or a decimal digit
in the string.

Exit Conditions

Binary value in HL
Carry flag is 0 if the string was valid; Carry flag

is I if the string contained an invalid charac
ter.

Note that the result is a signed two's complement
16-bit number.

I. Data: String consists of

04 (number of bytes in string)
31 (ASCII I)
32 (ASCII 2)
33 (ASCII 3)
34 (ASCII 4)

That is, the number is + I,234 10

Result: (H) = 04 16 (more significant byte of binary
data)

(L) = 02 16 (less significant byte of binary
data)

That is, the number +I,234 10 = 0402 16

183

184 CODE CONVERSION

2. Data: String consists of

06 (number of bytes in string)
2D (ASCII-)
33 (ASCII 3)
32 (ASCII 2)
37 (ASCII 7)
35 (ASCII 5)
30 (ASCII 0)

That is, the number is -32,750 10

Result: (H) = 8016 (more significant byte of binary
data)

(L) 1216 (less significant byte of binary
data)

That is, the number-32,750 10 = 8012 16

Title
Name:

Put-pose:

Decimal AsciI to binary
DEC2BN

Convert ASCII characters to two bytes of binary
data

HL Base address of input buffer

Exit: HL Binary value
if no errors then

Canoy 0
else

Cat-t- Y

Registet"s used: AF,BC,DE,HL

Time: Approximately 152 cycles per byte plus
a maximum of 186 cycles overhead

Size: Prclgram
Data

79 bytes
1 byte

DEC2BN:
;INITIALIZE - SAVE
LD A,(HL)
LD B,A
INC HL

SUB A
LD (NGFLAG),A
LD DE,O

LENGTH, CLEAR SIGN AND VALUE
;SAVE LENGTH IN B

;POINT TO BYTE AFTER LENGTH

;ASSUME NUMBER IS POSITIVE
;START WITH VALUE = 0

;CHECK FOR EMPTY BUFFER
OR B ;IS BUFFER LENGTH ZERO?

4F CONVERSION OF ASCII DECIMAL TO BINARY (DEC2BN) 185

.JR Z,EREXIT ;YES, EXIT WITH VALUE = 0

; CHECK FOR MINUS OR PLUS SIGN IN FRONT
INIT1:

LD A, (HL) ;GET FIRST CHARACTER
C:P ,.--"", ;IS IT A MINUS SIGN?
..JR NZ,PLUS ;NO, BRANCH
LD A,OFFH
LD (NGFLAG),A ;YES, MAKE SIGN OF NUMBER NEGATIVE
..JR SKIP ;SKIP OVER MINUS SIGN

PLUS:
CP .,+" ;IS FIRST CHARACTER A PLUS SIGN?
..JR NZ,CHKDIG ;NO, START CONVERSION

S~~ IP: INC HL ;SKIP OVER THE SIGN BYTE
DEC B ; DECREMENT COUNT
..JR Z,EREXIT ; ERROR EXIT IF ONLY A SIGN IN BUFFER

;CONVERSION LOOP
; CONTINUE UNTIL THE BUFFER IS EMPTY
; OR A NON-NUMERIC CHARACTER IS FOUND

CNVERT:
LD

CHKDIG: SUB
..JR
CP
.JR
LD

A, (HL)
"IY
C,EREXIT
9+1
NC,EREXIT
C,A

;GET NEXT CHARACTER

;ERROR IF < '0' (NOT A DIGIT)

;ERROR IF > '9' (NOT A DIGIT)
;CHARACTER IS DIGIT, SAVE IT

VALLIE • (8+2)

; :0: 4
; :0: 8
; VALUE

;VALID DECIMAL DIGIT SO
VALUE := VALUE. 10

VALUE. (8 + 2)
(VALUE. 8) + (VALUE. 2)

HL ;SAVE BUFFER POINTER
DE,HL ;HL = VALUE
HL,HL ; • 2
E,L ;SAVE TIMES 2 IN DE
D,H
HL,HL
HL,HL
HL,DE

PUSH
EX
ADD
LD
LD
ADD
ADD
ADD

;ADD IN
; VALUE
LD
LD
ADD
EX
POP
INC
D.JNZ

THE NEXT
:= VALUE
E,C
D,O
HL,DE
DE,HL
HL
HL
CNVERT

DIGIT
+ DIGIT

;MOVE NEXT DIGIT TO E
; HIGH BYTE IS 0
;ADD DIGIT TO VALUE
;DE = VALUE
;POINT TO NEXT CHARACTER

;CONTINUE CONVERSION

;CONVERSION IS COMPLETE, CHECK SIGN
EX DE,HL ;HL = VALUE
LD A, (NGFLAG)
OR A

186 CODE CONVERSION

,JR
EX
LD
OR
SBC

Z,OKEXIT
DE,HL
HL,O
A
HL,DE

;JUMP IF THE VALUE WAS POSITIVE
;ELSE REPLACE VALUE WITH -VALUE

;CLEAR CARRY
;SUBTRACT VALUE FROM 0

;NO ERRORS, EXIT WITH CARRY CLEAR

;CLEAR CARRY

;HL = VALUE
;SET CARRY TO INDICATE ERROR

A

DE,HL

OR
RET

;AN ERROR. EXIT WITH CARRY SET

EX
SCF
RET

OKEXIT:

EREXIT:

;DATA
NGFLAG: DS 1 ;SIGN OF NUMBER

SAMPLE EXECUTION:

SC4F:
; CONVERT .' 1234 .'
LD HL,Sl
CALL DEC2BN

;CONVERT ~+32767~

LD HL,S2
CALL DEC2BN

;CONVERT ~-32768~

LD HL,S3
CALL DEC2BN

;HL = BASE ADDRESS OF 81

;H = 04, L = D2 HEX

; HL = BASE ADDRESS OF 82

;H = 7F, L = FF HEX

;HL = BASE ADDRESS OF 8:3

;H = 80 HEX, L = 00 HEX

,JR 8C4F

81 : DB 4, .' 1234"
82: DB 6, "+32767"
83: DB 6, "-32768"

END

Lower-Case to Upper-Case
Translation (LC2UC) 4G

Converts an ASCII lower-case letter to its
upper-case equivalent.

Procedure: The program uses comparisons to
determine whether the data is an ASCII lower
case letter. If it is, the program subtracts 2016
from it, thus converting it to its upper-case equiv
alent. If it is not, the program leaves it unchanged.

Entry Conditions

Character in A

Examples

Registers Used: AF

Execution Time: 45 cycles if the original character is
a lower-case letter, fewer cycles otherwise

Program Size: II bytes

Data Memory Required: None

Exit Conditions

If an ASCII lower-case letter is present in A,
then its upper-case equivalent is returned in A.
In all other cases, A is unchanged.

I. Data:

Result:

(A) = 6216 (ASCII b)

(A) = 42 16 (ASCII B)

2. Data:

Result:

(A) = 54 16 (ASCII T)

(A) = 54 16 (ASCII T)

Title
Name:

F'1..wpose:

Lower-case to upper-case translation
LC2UC

Convert one ASCII character to upper case from
lower case if necessary

Exit:

Register- A

Register- A

Lower-case ASCII character

Upper-case ASCII character if A
is lower case, else A is unchanged

Register-s used: AF

187

188 CODE CONVERSION

Time:

Size:

45 cycles if A is lower case, less otherwise

Pt-c,gt-am 11 bytes
Data none

LC2UC:
CP -'a"-
...IR C,EXIT ; BRANCH IF < "a" (NOT LOWER CASE)
CP "z"+1
.JR NC,EXIT ; BRANCH IF :> ·",z·o. (NOT LOWER CASE)
SUB -'a"--"A" ; CHANGE .I' a 0.1' •••,,0 z.' into "A"' ••.,- z",

EXIT:
RET

SAMPLE EXECUTION:

SC4G:
; CONVERT LOWER CASE E TO UPPER CASE
LD A, "e"
CALL LC2UC ; A="E"=45H

; CONVERT LOWER CASE Z TO UPPER CASE
LD A, "z"
CALL LC2UC ; A="'Z "=5AH

; CONVERT UPPER CASE A TO UPPER CASE A
LD A, "A"
CALL LC2UC ; A="A"=41H
.JR SC4(;

END

ASCII to EBCDIC Conversion (ASC2EB) 4H

Converts an ASCII character to its EBCDIC
equivalent.

Procedure: The program uses a simple table
lookup with the data as the index and address
EBCDIC as the base. A printable ASCII charac
ter with no EBCDIC equivalent is translated to
an EBCDIC space (4016); a non-printable ASCII
character with no EBCDIC equivalent is trans
lated to an EBCDIC NUL (0016)'

Entry Conditions

ASCII character in A

Examples

Registers Used: AF, DE, HL

Execution Time: 55 cycles

Program Size: II bytes, plus 128 bytes for the con
version table

Data Memory Required: None

Exit Conditions

EBCDIC equivalent in A

1. Data: (A) = 35 16 (ASCII 5)

Result: (A) = F5 16 (EBCDIC 5)

2. Data: (A) = 77 16 (ASCII w)

Result: (A) = A616 (EBCDIC w)

3. Data:

Result:

(A) = 2A I6 (ASCII *)

(A) = 5C I6 (EBCDIC *)

Title
Name:

ASCII to EBCDIC conversion
ASC2EB

Convert an ASCII character to its
corresponding EBCDIC character

E>:i t :

Register A

Register- A

ASCI I char-acter-

189

190 CODE CONVERSION

Registers used: AF,DE, HL

Time:

Size:

55 cycles

Pt-c,gt-am 11 bytes
Data 128 bytes for the table

ASC2EB:
LD
AND
LD
LD
ADD
LD
RET

HL,EBCDIC
01111111B
E,A
D,O
HL,DE
A,(HLl

;GET BASE ADDRESS OF EBCDIC TABLE
;BE SURE BIT 7 = 0
;USE ASCII AS INDEX INTO EBCDIC TABLE

;GET EBCDIC

;ASCII TO EBCDIC TABLE
A PRINTABLE ASCII CHARACTER WITH NO EBCDIC EQUIVALENT IS
TRANSLATED TO AN EBCDIC SPACE (040Hl, A NONPRINTABLE ASCII CHARACTER

; WITH NO EQUIVALENT IS TRANSLATED TO A EBCDIC NUL (OOOHl
EBCDIC:

DB
,
DB

DB

DB
,
DB
,
DB

DB

DB

DB
,
DB

DB

DB

DB

DB
,
DB

DB

NUL SOH STX ETX EOT ENQ ACK BEL
OOOH,001H,002H,003H,037H,02DH,02EH,02FH
BS HT LF VT FF CR SO SI
016H,005H,025H,00BH,00CH,OODH,OOEH,OOFH
OLE DCl DC2 DC3 DC4 NAK SYN ETB
010H,011H,012H,013H,03CH,03DH,032H,026H
CAN EM SUB ESC IFS IGS IRS IUS
018H,019H,03FH,027H,01CH,OlDH,OlEH,OlFH
SPACE ! # $ % &
040H,05AH,07FH,07BH,05BH,06CH,050H,OODH

(l * + , _ /
04DH,05DH,05CH,04EH,06BH,060H,04BH,061H
o 1 2 3 4 5 6 7

OFOH,OFIH,OF2H,OF3H,OF4H,OF5H,OF6H,OF7H
8 9 < >?

OF8H,OF9H,07AH,05EH,04CH,07EH,06EH,06FH
@ ABC D E F G

07CH,OCIH,OC2H,OC3H,OC4H,OC5H,OC6H,OC7H
H I J K L M N 0

OC8H,OC9H,ODIH,OD2H,OD3H,OD4H,OD5H,OD6H
P Q R STU V W

OD7H,OD8H,OD9H,OE2H,OE3H,OE4H,OE5H,OE6H
X Y Z [\ J

OE7H,OE8H,OE9H,040H,OEOH,040H,040H,06DH
abc d e f g

009H,081H,082H,083H,084H,085H,086H,087H
h i j kim n 0

088H,089H,091H,092H,093H,094H,095H,096H
p q r stu v w

097H,098H,099H,OA2H,OA3H,OA4H,OA5H,OA6H
x y z { } DEL

OA7H,OA8H,OA9H,OCOH,06AH,ODOH,OAIH,007H

;ASCII
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
; ASCI I
;EBCDIC
;ASCII
;EBCDIC
; ASCI I
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
; ASCI I
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC

SC4H:

4H ASCII TO EBCDIC CONVERSION (ASC2EB) 191

SAMPLE EXECUTION:

;CONVERT ASCII ~A~ TO EBCDIC
LD A,~A' ;ASCII ~A~

CALL ASC2EB ;EBCDIC 'A' OC1H

;CONVERT ASCII '1' TO EBCDIC
LD A,'1' ;ASCII '1'
CALL ASC2EB ;EBCDIC '1' OF1H

;CONVERT ASCII 'a' TO EBCDIC
LD A,'a' ;ASCII 'a'
CALL ASC2EB ;EBCDIC ~a' 081H

.JR SC4H

END

EBCDIC to ASCII Conversion (E82ASC) 41

Converts an EBCDIC character to its ASCII
equivalent.

Procedure: The program uses a simple table
lookup with the data as the index and address
ASCII as the base. A printable EBCDIC charac
ter with no ASCII equivalent is translated to an
ASCII space (2016); a non-printable EBCDIC
character with no ASCII equivalent is trans
lated to an ASCII NUL (0016)'

Entry Conditions

EBCDIC character in A

Examples

Registers Used: AF, DE, HL

Execution Time: 48 cycles

Program Size: 9 bytes, plus 256 bytes for the con
version table

Data Memory Required: None

Exit Conditions

ASCII equivalent in A

I. Data:

Result:

(A) = 85 16 (EBCDIC e)

(A) 65 16 (ASCII e)

2. Data:

Result:

(A) = 4E I6 (EBCDIC +)

(A) = 2B I6 (ASCII +)

Title
Name:

Put-pose:

EBCDIC to ASCII conversion
EB2ASt:

Convert an EBCDIC character to its
corresponding ASCII character

Exit:

Register A

Register A

EBCDIC chat-a,:tet-

ASCI I chat-actet-

Registers used: AF,DE,HL

192

Time:

Size:

41 EBCDIC TO ASCII CONVERSION

48 cycles

Pr-':;Jgr- am 9 by t e s
Data 256 bytes for the table

193

EB2ASC:
LD
LD
LD
ADD
LD
RET

HL,ASCII
E,A
D,O
HL,DE
A, (HL)

;GET BASE ADDRESS OF ASCII TABLE
;USE EBCDIC AS INDEX

;GET ASCII CHARACTER

;EBCDIC TO ASCII TABLE
; A PRINTABLE EBCDIC CHARACTER WITH NO ASCII EQUIVALENT IS
; TRANSLATED TO AN ASCII SPACE (020H), A NONPRINTABLE EBCDIC CHARACTER
; WITH NO EQUIVALENT IS TRANSLATED TO AN ASCII NUL (OOOH)
ASCII :

OOOH, .'' ,":'
a b

OOOH, .' a" , "b"
h i

,
DB

DB

DB
,
DB
,
DB
,
DB
,
DB
,
DB
,
DB
,
DB

DB

"DB
,
DB
,
DB
,
DB
,
DB
,
DB

NUL SOH STX ETX HT DEL
000H,00IH,002H,003H,OOOH,009H,OOOH,07FH

VT FF CR SO SI
OOOH,OOOH,OOOH,OOBH,OOCH,OODH,OOEH,OOFH
DLE DCI DC2 DC3 BS
OIOH,OIIH,OI2H,OI3H,OOOH,OOOH,008H,OOOH
CAN EM IFS IGS IRS IUS
OI8H,OI9H,OOOH,OOOH,OICH,OIDH,OIEH,OIFH

LF ETB ESC
OOOH,OOOH,OOOH,OOOH,OOOH,OOAH,Ol7H,OlBH

ENQ ACK BEL
OOOH,OOOH,OOOH,OOOH,OOOH,005H,006H,007H

SYN EOT
OOOH,OOOH,Ol6H,OOOH,OOOH,OOOH,OOOH,004H

DC4 NAK SUB
OOOH,OOOH,OOOH,OOOH,Ol4H,Ol5H,OOOH,OlAH
SPACE
, , ,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH

< (+
OOOH,OOOH,' , ,'.' ,'(' ,'(' ,'+' " ,

~"-:

'&' ,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH
! $:c:) ;

OOOH, OOOH, .' !., , "$" , .,:c:., ,") ..' ,";" ,., .'

- /
'_' ,'/' ,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH

, /.)?
OOOH,OOOH,':' ,',' ,'/.' ,'-' ,')' ,'?'

OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH
@

, .,#., , .,@ .., ., ..' "", .'=.,
c d e f g

, "c" , "d" , "e" , "f" , "g"

;EBCDIC
;ASCII
;EBCDIC
; ASCI I
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
; ASC I I
;EBCDIC
;ASCII
;EBCDIC
; ASCI I
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
; ASCI I
;EBCDIC
; ASCI I
;EBCDIC
; ASCI I
;EBCDIC
; ASC: I I
;EBCDIC

194 CODE CONVERSION

OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH

OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH

,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH

ABC D E F G
, "A" , "B" , ·'C·' , "D'" , "E"' , "F"' , "G'"

I
,"'I' ,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH

J K L M N 0 P
, " ...1" , "K" , "L" , o'Mo' , "No' , 0'0" , ,'po"

R
,"'R"' ,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH

STU V W X
,OOOH,'S' ,'T' ,"'U' ,'V' ,'W', "'X'

Z
,'Z' ,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH

1 2 345 6 7
,'1' ,"'2(,'3' ,'4' ,'5' ,'6"' ,'7'

; ASCI I
;EBCDIC
; ASCI I
;EBCDIC
; ASCI I
;EBCDIC
; ASCI I
;EBCDIC
;ASCII
;EBCDIC
; ASCI I
;EBCDIC
; ASCI I
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
; ASCI I
;EBCDIC
;ASCII
;EBCDIC
;ASCII

r ·... 5·". , ·'t·, , ·"'u·.I' , -'V·.. , ·... w·.,., ·... N···

,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH
kIm n 0 p

,"'k" ,"1" ,"m" ,"n" ,"'CI" ,"p"

,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH
5 t u V w X

,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH

{
..' {.,

H
"H"

}
o'} ..,

Q
"Q"

\
0'\ .'

Y
,'y.'
o

"0"
9

"9 0

'

'''y'.!' , ·"'z·'"

"h" ," i"
j

OOOH, .' j .'
q t"

"'q" , "t""

OOOH, .''''.'
y z

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

SAMPLE EXECUTION:

SC4I:
; CONVERT EBCDIC "A" TO ASCII
LD A,OCIH ;EBCDIC .' A"
CALL EB2ASC ;ASCII "Ao" = 041H

; CONVERT EBCDIC .' 1 0
' TO ASCII

LD A,OFIH ;EBCDIC .' 1"
CALL EB2ASC ; ASCI I .' 1" = O:31H

; CONVERT EBCDIC "a" TO ASCI I
LD A,081H ;EBCDIC "'a"
CALL EB2ASC ;ASCII "a" = 061H

,JR S(:4 I

END

Memory Fill (MFILL)

Places a specified value in each byte ofa mem
ory area of known size, starting at a given ad
dress.

Procedure: The program stores the specified
value in the first byte and then uses a block move
to fill the remaining bytes. The block move
simply transfers the value a byte ahead during
each iteration.

Entry Conditions

Starting address of memory area in HL

Area size (number of bytes) in Be

Value to be placed in memory in A

Examples

I. Data: Value = FF16
Area size (in bytes) = 038016
Base address = IAEO l6

Result: FF16 placed in addresses IAE0 16 through
IE5F16

5A

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 21 cycles per byte
plus 50 cycles overhead

Program Size: II bytes

Data Memory Required: None

Special Cases:

I. A size of000016 is interpreted as 1000016' It there
fore causes the program to fill 65,536 bytes with
the specified value.

2. Filling areas occupied or used by the program
itself will cause unpredictable results. Obviously,
filling the stack area requires special caution,
since the return address is saved there.

Exit Conditions

The area from the base address through the
number of bytes given by the area size is filled
with the specified value. The area thus filled
starts at BASE and continues through BASE +
SIZE - I (BASE is the base address and SIZE is
the area size).

2. Data: Value = 0016 (Z80 operation code for Nap)
Area size (in bytes) = IC65 16
Base address = E34C16

Result: 0016 placed in addresses E34C16 through
FFB0 16

195

196 ARRAY MANIPULATION

Title
Name:

Purpose:

Entry:

Exit :

Mem.::tt-y fill
MFILL

Fill an area of memory with a value

Register H High byte of base address
Register L Low byte of base address
Register B High byte of area size
Register C = Low byte of area size
Register A = Value to be placed in memory

Note: A size of 0 is interpreted as 65536

Area filled with value

Registers used: AF,BC,DE,HL

MFILL:

Time:

Size:

LD
LD
LD
INC
DEC
LD
OR
RET
LDIR

RET

(HL),A
D,H
E,L
DE
BC
A,B
C
Z

Approximately 21 cycles per byte plus
50 cycles overhead

Program 11 bytes
Data None

~FILL FIRST BYTE WITH VALUE
~DESTINATION PTR = SOURCE PTR + 1

~ELIMINATE FIRST BYTE FROM COUNT
~ARE THERE MORE BYTES TO FILL?

~NO, RETURN - SIZE WAS 1
~YES, USE BLOCK MOVE TO FILL REST
~ BY MOVING VALUE AHEAD 1 BYTE

SC5A:

SAMPLE EXECUTION:

~FILL BFt THROUGH BF1+15 WITH 00
LD HL,BF1 ~STARTING ADDRESS
LD BC,SIZE1 ~NUMBER OF BYTES

LO
CALL

A,O
MFILL

;VALUE TO FILL
:FILL MEMORY

5A MEMORY FILL (MFILL) 197

;FILL BF2 THROUGH BF2+1999 WITH FF
LO HL,BF2 :STARTING ADDRESS
LD BC,SIZE2 ;NUMBER OF BYTES
LO A,OFFH ;VALUE TO FILL
CALL MFILL ;FILL MEMORY

JR SC5A

SIZE1 EQU 16 ;SIZE OF BUFFER 1 (10 HEX)
SIZE2 EQU 2000 ;SIZE OF BUFFER 2 (0700 HEX)
BFl : OS SIZE1
BF2: DS SIZE2

END

Moves a block of data from a source area to
a destination area.

Procedure: The program determines if the
base address of the destination area is within the
source area. If it is, then working up from the
base address would overwrite some source data.
To avoid overwriting, the program works down
from the highest address (this is sometimes called
a move right). If the base address of the destina
tion area is not within the source area, the
program simply moves the data starting from
the lowest address (this is sometimes called a
move left). An area size (number of bytes to
move) of 000016 causes an exit with no memory
changed. The program provides automatic ad
dress wraparound mod 64K.

Entry Conditions

Base address of source area in HL

Base address of destination area in DE

Number of bytes to move in register BC

Examples

58

Registers Used: AF, BC, DE, HL

Execution Time: 21 cycles per byte plus 97 cycles
overhead if data can be moved starting from the
lowest address (i.e., left) or 134 cycles overhead if
data must be moved starting from the highest
address (i.e., right) because of overlap.

Program Size: 27 bytes

Data Memory Required: None

Special Cases:
I. A size (number of bytes to move) of 0 causes an

immediate exit with no memory changed.

2. Moving data to or from areas occupied or used
by the program itself or by the stack will have
unpredictable results.

Exit Conditions

The block of memory is moved from the source
area to the destination area. If the number of
bytes to be moved is NBYTES, the base address
of the destination area is DEST, and the base
address of the source area is SOURCE, then the
data in addresses SOURCE through SOURCE
+ NBYTES 1 is moved to addresses DEST
through DEST + NBYTES 1.

1. Data: Number of bytes to move = 0200 16 2. Data:
Base address of destination area 0501 16
Base address of source area = 035E I6

Result: The contents of locations 035E I6 through Result:
055016 are moved to 0501 16 through
070°16

198

Number of bytes to move = I B7A I6
Base address of destination area C946 16
Base address of source area = C300 16
The contents of locations C300 16 through

OE79 16 are moved to C946 16 through
E4BFI6

Note that Example 2 is a more difficult prob
lem than Example 1because the source and des
tination areas overlap. If, for instance, the pro
gram were simply to move data to the destination
area starting from the lowest address, it would
initially move the contents of C30016 to C94616.

5B BLOCK MOVE (BLKMOV) 199

This would destroy the old contents of C94616,
which are needed later in the move. The solution
to this problem is to move the data starting from
the highest address if the destination area is
above the source area but overlaps it.

Title
Name:

Purpose:

Block Move
BLKMOV

Move data from source to destination

Entry: Register-H
Register L
Register D
Register E
Register B
Register C

High byte of source address
Low byte of source address
High byte of destination address
Low byte of destination address ;
High byte of number of bytes to move;
Low byte of number of bytes to move

Exit: Data moved from source to destination

Registers used:AF,BC,DE,HL

BLKMOV:

Time:

Size:

LD
OR
RET

A,B
C
Z

21 cycles per byte plus 97 cycles overhead
if no overlap exists, 134 cycles overhead
if overlap occurs

Program 27 bytes

;IS SIZE OF AREA O?

;YES, RETURN WITH NOTHING MOVED

;DETERMINE IF DESTINATION AREA IS ABOVE SOURCE AREA AND OVERLAPS
; IT (OVERLAP CAN BE MOD 64K). OVERLAP OCCURS IF
; STARTING DESTINATION ADDRESS MINUS STARTING SOURCE ADDRESS
; (MOD 64K) IS LESS THAN NUMBER OF BYTES TO MOVE
EX DE,HL ;CALCULATE DESTINATION - SOURCE
PUSH HL ;SAVE DESTINATION
AND A ; CLEAR CARRY

200 ARRAY MANIPULATION

SBC
AND
SBC
POP
EX
•.JR

Hl,DE
A
HL,BC
HL
DE,HL
NC,DOLEFT

;THEN SUBTRACT AREA SIZE

;RESTORE DESTINATION

;JUMP IF NO PROBLEM WITH OVERLAP

;DESTINATION AREA IS ABOVE SOURCE AREA AND OVERLAPS IT
;MOVE FROM HIGHEST ADDRESS TO AVOID DESTROYING DATA
ADD HL,BC ;SOURCE = SOURCE + LENGTH - 1
DEC HL
EX DE,HL ;DEST = DEST + LENGTH - 1
ADD HL,BC
DEC HL
EX DE,HL
LDDR ;BLOCK MOVE HIGH TO LOW
RET

;ORDINARY MOVE STARTING AT LOWEST ADDRESS
DOLEFT:

LDIR
RET

SAMPLE EXECUTION:

;BLOCK MOVE LOW TO HIGH

SOURCE EQU
DEST EQU
LEN EQU

2000H
2010H
11H

;BASE ADDRESS OF SOURCE AREA
;BASE ADDRESS OF DESTINATION AREA
;NUMBER OF BYTES TO MOVE

;MOVE 11 HEX BYTES FROM 2000-2010 HEX TO 2010-2020 HEX
SC5B:

LD
LD
LD
CALL

HL,SOURCE
DE,DEST
BC,LEN
BLKMOV ;MOVE DATA FROM SOURCE TO DESTINATION

JR SC5B

END

Two-Dimensional Byte Array
Indexing (D2BVTE) 5C

Calculates the address of an element of a
two-dimensional byte-length array, given the
base address of the array, the two subscripts of
the element, and the size of a row (that is, the
number of columns). The array is assumed to be
stored in row major order (that is, by rows) and
both subscripts are assumed to begin at O.

Procedure: The program multiplies the row
size (number of columns in a row) times the row
subscript (since the elements are stored by rows)
and adds the product to the column subscript. It
then adds the sum to the base address. The
program performs the multiplication using a

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of column subscript
More significant byte of column subscript

Less significant byte of the size of a row (in bytes)
More significant byte of the size of a row (in bytes)

Less significant byte of row subscript
More significant byte of row subscript

Less significant byte of base address of array
More significant byte of base address of array

Examples

L Data: Base address = 3COO l6
Column subscript = 0004 16
Size of row (number of columns) = 0018 16
Row subscript = 0003 16

Registers Used: AF, BC, DE, H L

Execution Time: Approximately 1100 cycles, de
pending mainly on the amount of time required to
perform the multiplication.

Program Size: 44 bytes

Data Memory Required: Four bytes anywhere in
memory to hold the return address (two bytes start
ing at address RETADR) and the column subscript
(two bytes starting at address SS2).

standard shift-and-add algorithm (see Subrou
tine 6A).

Exit Conditions

Address of element in HL

Result: Element address = 3COO l6 + 0003 16 * 0018 16 +
000416 = 3COO l6 + 0048 16 + 000416 =
3C4C I6

That is, the address of ARRAY(3,4) is 3C4CI6

201

202 ARRAY MANIPULATION

Note that all subscripts are hexadecimal
(3516 53 10).

The general formula is

ELEMENT ADDRESS ARRAY BASE
ADDRESS + ROW SUBSCRIPT * ROW SIZE
+ COLUMN SUBSCRIPT

2. Data: Base address = 6A4A I6
Column subscript = 0035 16
Size of row (number of columns) 0050 16
Row subscript = 0002 16

Result: Element address= 6A4A I6 +0002 16 *0050 16 +
0035 16 = 6A4A I6 + 00AO l6 + 0035 16 =
6BIF I6

That is, the address of ARRAY(2,35) is
6BIF I6

Nate that we refer to the size of the row sub
script; the size is the number of consecutive
memory addresses for which the subscript has
the same value. This is also the number of bytes
from the starting address of an element to the
starting address of the element with the same
column subscript but a row subscript one larger.

Title
Name:

Purpose:

Entry:

Two-dimensional byte array indexing
D::2BYTE

Given the base address of a byte array, two
subscripts 'I','J', and the size of the first
subscript in bytes, calculate the address of
ArI,JJ. The array is assumed to be stored in
row major order (ArO,OJ, ArO,1J, ••• , ArK,LJ),
and both dimensions are assumed to begin at
zero as in the following Pascal declaration:

A:ARRAYrO •• 2,O •• 7J OF BYTE;

TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of second subscript (column element), ;
High byte of second subscript (column element),;
Low byte of first subscript size, in bytes,
High byte of first subscript size, in bytes,
Low byte of first subscript (row element),
High byte of first subscript (row element),
Low byte of array base address,
High byte of array base address,

NOTE:
The first subscript size is length of a row
in bytes

Exit:

5C TWO-DIMENSIONAL BYTE ARRAY INDEXING (D2BYTE) 203

Register H = High byte of element address
Register L = Low byte of element address

Registers used: AF,BC,DE, HL

;SAVE RETURN ADDRESS
POP HL
LD (RETADR>,HL

;GET SECOND SUBSCRIPT
POP HL
LD (SS2), HL
;GET SIZE OF FIRST SUBSCRIPT (ROW LENGTH), FIRST SUBSCRIPT
POP DE ;GET LENGTH OF ROW
POP BC ; GET FIRST SUBSCR IPT

;MULTIPLY FIRST SUBSCRIPT * ROW LENGTH USING SHIFT AND ADD
; ALGORITHM. PRODUCT IS IN HL
LD HL,O ;PRODUCT = 0
LD A,15 ;COUNT = BIT LENGTH - 1

D2BYTE:

MLP:

MLPl :

Time:

Size:

SLA
RL
..JR
ADD
ADD
DEC
..JR

E
D
NC,MLPl
HL,BC
HL,HL
A
NZ,MLP

Approximately 1100 cycles

Program 44 bytes
Data 4 bytes

;SHIFT LOW BYTE OF MULTIPLIER
;ROTATE HIGH BYTE OF MULTIPLIER
;..JUMP IF MSB OF MULTIPLIER = 0
;ADD MULTIPLICAND TO PARTIAL PRODUCT
;SHIFT PARTIAL PRODUCT

;CONTINUE THROUGH 15 BITS

;DO
OR
..JP
ADD
;ADD
LD
ADD

;RESTORE RETURN ADDRESS TO STACK

MLP2:

LAST ADD IF MSB OF MULTIPLIER IS 1
D ;SIGN FLAG = MSB OF MULTIPLIER
P,MLP2
HL,BC ;ADD IN MULTIPLICAND IF SIGN = 1

IN SECOND SUBSCRIPT
DE, (SS2)
HL,DE

;ADD BASE ADDRESS TO FORM FINAL ADDRESS
POP DE ;GET BASE ADDRESS OF ARRAY
ADD HL,DE ;ADD BASE TO INDEX

;RETURN TO CALLER
LD DE, (RETADR)
PUSH DE
RET

; DATA

204 ARRAY MANIPUlATION

RETADR: DS
SS2: DS

2
2

;TEMPORARY FOR RETURN ADDRESS
;TEMPORARY FOR SECOND SUBSCRIPT

SAMPLE EXECUTION:

SC5C:
lD
PUSH
lD
PUSH
lD
PUSH
lD
PUSH
CALL

Hl,ARY
Hl
Hl, (SUBSl)
Hl
Hl, (SSUBS1)
Hl
Hl,(SUBS2)
HL
D2BYTE

;PUSH BASE ADDRESS OF ARRAY

;PUSH FIRST SUBSCRIPT

;PUSH SIZE OF FIRST SUBSCRIPT

;PUSH SECOND SUBSCRIPT

;CAlCULATE ADDRESS
;FOR THE INITIAL TEST DATA
;Hl = ADDRESS OF ARY(2,4)

= ARY + (2*8) + 4
, ARY + 20 (CONTENTS ARE 21)
;NOTE BOTH SUBSCRIPTS START AT 0

JR SC5C

; DATA
SUBS1 : DW 2 ; SUBSCRIPT 1
SSUBS1 : DW 8 ;SIZE OF SUBSCRIPT 1
SUBS2: DW 4 ;SUBSCRIPT 2

;THE ARRAY (3 ROWS OF 8 COLUMNS)
ARY: DB 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8

DB 9 ,10,11,12,13,14,15,16
DB 17,18,19,20,21,22,23,24

END

Two-Dimensional Word Array
Indexing (02WORO) 50

Calculates the starting address of an element
of a two-dimensional word-length (16-bit) array,
given the base address of the array, the two
subscripts of the element, and the size of a row in
bytes. The array is assumed to be stored in row
major order (that is, by rows) and both sub
scripts are assumed to begin at O.

Procedure: The program multiplies the row
size (in bytes) times the row subscript (since the
elements are stored by row), adds the product to
the doubled column subscript (doubled because
each element occupies two bytes), and adds the
sum to the base address. The program uses a

Entry Conditions
Order in stack (starting at the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of column subscript
More significant byte of column subscript

Less significant byte of size of rows (in bytes)
More significant byte of size of rows (in bytes)

Less significant byte of row subscript
More significant byte of row subscript

Less significant byte of base address of array
More significant byte of base address of array

Examples

1. Data: Base address = 5El4 16
Column subscript = 0008 16
Size of a row (in bytes) 00lC I6 (i.e., each

row has 0014 10 or 000E I6 word-length ele
ments)

Row subscript = 0005 16

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 1100 cycles, de
pending mainly on how long it takes to multiply row
size times row subscript

Program Size: 45 bytes

Data Memory Required: Four bytes anywhere in
memory to hold the return address (two bytes start
ing at address RETADR) and the column subscript
(two bytes starting at address SS2)

standard shift-and-add algorithm (see Subrou
tine 6A) to multiply.

Exit Conditions

Starting address of element in HL
The element occupies the address in HL and the

next higher address

Result: Element starting address = 5EI416 + 0005 16 *
00lC I6 + 0008 16 * 2 = 5El4 16 + 008C I6 +
0010 16 = 5EBO l6

That is, the starting address of ARRAY(5,8)
is 5EBO l6 and the element occupies 5EBO l6
and 5EBl 16

205

206 ARRAY MANIPULATION

2. Data: Base address = BIOO l6
Column subscript = 0002 16
Size of a row (in bytes) = 0008 16 (i.e., each

row has four word-length elements)
Row subscript = 0006 16

Result: Element starting address = BlO016 + 0006 16 *
0008 16 + 0002 16 * 2 = BlO0 16 + 0030 16 +
0004 16 = B13416

That is, the starting address of ARRAY(6,2)
is Bl34 16 and the element occupies B134 16
and Bl35 16

The general formula is

ELEMENT STARTING ADDRESS = ARRAY
BASE ADDRESS + ROW SUBSCRIPT *
SIZE OF ROW + COLUMN SUBSCRIPT * 2

Note that one parameter of this routine is the
size of a row in bytes. The size for word-length
elements is the number of columns per row
times 2 (the size of an element in bytes). The
reason we chose this parameter rather than the
number of columns or the maximum column
index is that this parameter can be calculated
once (when the array bounds are determined)
and used whenever the array is accessed. The
alternative parameters (number of columns or
maximum column index) would require extra
calculations during each indexing operation.

Title
Name:

Purpose:

Entry:

Two-dimensional word array indexing
D2WORD

Given the base address of a word array, two
subscripts ~I~,~J~, and the size of the first
subscript in bytes, calculate the address of
ACI,JJ. The array is assumed to be stored in
row major order (ACO,OJ, ACO,iJ, ... , ACK,LJ),
and both dimensions are assumed to begin at
zero as in the fol~owing Pascal declaration:

A:ARRAYCO .• 2,O .• 7J OF WORD;

TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of second subscript (column element)
High byte of second subscript (column element);
Low byte of first subscript size, in bytes,
High byte of first subscript size, in bytes,
Low byte of firs~ subscript (row element),
High byte of firit subscript (row element),
Low byte of array base address,
High byte of array base address,

NOTE:
The first s~bscript size is length of a row
in words * 2

Exit:

50 TWO-DIMENSIONAL WORD ARRAY INDEXING (D2WORD) 207

Register H = High byte of element address
Register L = High byte of element address

Registers used: AF,BC,DE,HL

Time:

Size:

Approximately 1100 cycles

Program 45 bytes
Data 4 bytes

D2WORD:
~SAVE RETURN ADDRESS
POP HL
LD (RETADR),HL

~GET SECOND SUBSCRIPT, MULTIPLY BY 2 FOR WORD-LENGTH ELEMENTS
POP HL
ADD HL,HL ~* 2
LD (SS2),HL
~GET SIZE OF FIRST SUBSCRIPT (ROW LENGTH), FIRST SUBSCRIPT
POP DE ;GET LENGTH OF ROW
POP BC ~GET FIRST SUBSCRIPT

;MULTIPLY FIRST SUBSCRIPT * ROW LENGTH USING SHIFT AND ADD
; ALGORITHM. PRODUCT IS IN HL
LD HL,O ;PRODUCT = 0
LD A,15 ;COUNT = BIT LENGTH - 1

MLP:

MLP1:

SLA
RL
,JR
ADD
ADD
DEC
,JR

E
D
NC,MLPl
HL,BC
HL,HL
A
NZ,MLP

;SHIFT LOW BYTE OF MULTIPLIER
~ROTATE HIGH BYTE OF MULTIPLIER
~,JUMP IF MSB OF MULTIPLIER = 0
;ADD MULTIPLICAND TO PARTIAL PRODUCT
;SHIFT PARTIAL PRODUCT

~CONTINUE THROUGH 15 BITS

MLP2:

~ADD

OR
,JP
ADD
~ADD

LD
ADD

MULTIPLICAND IN LAST TIME IF MSB OF MULTIPLIER IS
D ~SIGN FLAG = MSB OF MULTIPLIER
P,MLP2
HL,BC ;ADD IN MULTIPLICAND IF SIGN =

IN SECOND SUBSCRIPT
DE, (SS2)
HL,DE

~ADD BASE ADDRESS TO FORM FINAL ADDRESS
POP DE ~GET BASE ADDRESS OF ARRAY
ADD HLtDE ~ADD BASE TO INDEX

;RETURN TO CALLER
LD DE, (RETADR)
PUSH DE
RET

~RESTORE RETURN ADDRESS TO STACK

208 ARRAY MANIPULATION

; DATA
RETADR: DS 2
SS2: DS 2

SAMPLE EXECUTION:

;TEMPORARY FOR RETURN ADDRESS
;TEMPORARY FOR SECOND SUBSCRIPT

SC5D:
LD
PUSH
LD
PUSH
LD
PUSH
LD
PUSH
CALL

HL 7 ARY
HL
HL 7 (SUBSt)
HL
HL 7 (SSUBS1)
HL
HL 7 (SUBS2)
HL
D2WORD

;PUSH BASE ADDRESS OF ARRAY

;PUSH FIRST SUBSCRIPT

;PUSH SIZE OF FIRST SUBSCRIPT

;PUSH SECOND SUBSRIPT

;CALCULATE ADDRESS
;FOR THE INITIAL TEST DATA
;HL = ADDRESS OF ARY(2,4)

ARY + (2*16) + 4 * 2
, ARY + 40 (CONTENTS ARE 2100H)
;NOTE BOTH SUBSCRIPTS START AT 0

JR SC5D

; DATA
SUBS1: DW
SSUBS1: DW
SUBS2: DW

2
16
4

;SUBSCRIPT 1
;SIZE OF SUBSCRIPT 1
;SUBSCRIPT 2

;THE ARRAY (3 ROWS OF 8 COLUMNS)
ARY: DW 0100H 7 0200H,0300H 7 0400H,0500H,0600H,0700H,0800H

DW 0900H, 1000H,1100H, 1200H, 1300H,1400H 7 1500H 7 1600H
DW 1700H 7 1800H,1900H 7 2000H 7 2100H,2200H,2300H,2400H

END

N-Dimensional Array
Indexing (NDIM)

Calculates the starting address of an element
of an N-dimensional array given the base address
and N pairs of sizes and subscripts. The size of a
dimension is the number of bytes from the start
ing address of an element to the starting address
of the element with an index one larger in the
dimension but the same in all other dimensions.
The array is assumed to be stored in row major
order (that is, organized so that subscripts to the
right change before subscripts to the left).

Note that the size of the rightmost subscript is
simply the size of the elements (in bytes); the size
of the next subscript is the size of the elements
times the maximum value of the rightmost sub
script plus 1, and so forth. All subscripts are
assumed to begin at O. Otherwise, the user must
normalize the subscripts. (See the second exam
ple at the end of the listing.)

Procedure: The program loops on each dimen
sion, calculating the offset in that dimension as
the subscript times the size. If the size is an easy

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of number of dimensions
More significant byte of number of dimensions

(not used)

Less significant byte of size of rightmost dimen
SIOn

More significant byte of size of rightmost dimen
SIOn

Less significant byte of rightmost subscript
More significant byte of rightmost subscript

5E

Registers Used: AF, Be, DE, HL

Execution Time: Approximately 1300 cycles per
dimension plus 165 cycles overhead (depending
mainly on how much time is required to perform the
multiplications)

Program Size: 120 bytes

Data Memory Required: Five bytes anywhere in
memory to hold the return address (two bytes start
ing at address RETADR), the accumulated offset
(two bytes starting at address OFFSET), and the
number of dimensions (one byte at address
NUMDlM)

Special Case: If the number of dimensions is 0, the
program returns with the base address in HL.

case (an integral power of 2), the program reduc
es the multiplication to left shifts. Otherwise, it
performs each multiplication using the shift
and-add algorithm of Subroutine 6A. Once the
program has calculated the overall offset, it adds
that offset to the base address to obtain the
starting address of the element.

Exit Conditions

Starting address of element in HL
The element occupies memory addresses START

through START + SIZE - 1, where START
is the calculated address and SIZE is the size
of an element in bytes.

209

210 ARRAY MANIPULATION

Less significant byte of size of leftmost dimen
sion

More significant byte of size of leftmost dimen-
sion

Less significant byte of leftmost subscript
More significant byte of leftmost subscript

Less significant byte of base address of array
More significant byte of base address of array

Example

I. Data: Base address 3COO l6
Number of dimensions = 0003 16
Rightmost subscript = 0005 16
Rightmost size = 0003 16 (3-byte entries)
Middle subscript = 0003 16
Middle size = 0012 16 (six 3-byte entries)
Leftmost subscript = 0004 16
Leftmost size = 007E I6 (seven sets of six 3

byte entries)

Result: Element starting address = 3C00 16 + 0005 16 *
0003 16 + 0003 16 * 001216 + 0004 16 *
007E I6 = 3COO l6 + 000F I6 + 0036 16 +
0lF8 16 = 3E3D I6

That is, the element is ARRAY (4,3,5); it
occupies addresses 3E3D I6 through 3E3F I6
(the maximum values of the various sub
scripts are 6 (leftmost) and 5 (middle) with
each element occupying three bytes)

The general formula is

STARTING ADDRESS = BASE ADDRESS +
N-I

L SUBSCRIPTi * SIZE i

i=O

where

N is the number of dimensions
SUBSCRIPTi is the ith subscript
SIZE i is the size of the ith dimension

Note that we use the size of each dimension as
a parameter to reduce the number of repetitive
multiplications and to generalize the procedure.
The sizes can be calculated and saved as soon as
the bounds of the array are known. Those sizes
can then be used whenever indexing is per
formed on that array. Obviously, the sizes do not
change if the bounds are fixed, and they should
not be recalculated as part of each indexing
operation. The sizes are also general, since the
elements can themselves consist of any number
of bytes.

Title
Name:

Purpose:

Entry:

Exit:

5E N-DIMENSIONAL ARRAY INDEXING (NDIM) 211

N-dimensional array indexing
NDIM

Calculate the address of an element in an
N-dimensional array given the base address,
N pairs of size in bytes and subscript, and the
number of dimensions of the array. The array is
assumed to be stored in row major order
(ArO,O,O],A[O,O, IJ, ••• ,ArO, 1,0J,ArO, 1, 1], •••).
Also, it is assumed that all dimensions begin
at 0 as in the following Pascal declaration:

A:ARRAY[0 •• 10,O•• 3,O•• 5J OF SOMETHING
For arrays that do not begin at 0 boundaries,
normalization must be performed before calling
this routine. An example is given at the end.

TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of number dimensions,
High byte of number dimensions (not used),
Low byte of dim N-l size
High byte of dim N-l size
Low byte of dim N-l subscript
High byte of dim N-l subscript
Low byte of dim N-2 size
High byte of dim N-2 size
Low byte of dim N-2 subscript
High byte of dim N-2 subscript

Low byte of dim 0 size
High byte of dim 0 size
Low byte of dim 0 subscript
High byte of dim 0 subscript
Low byte of array base address
High byte of array base address

NOTE:
All sizes are in bytes

Register H = High byte of address
Register L = Low byte of address

Registers used: AF,BC,DE,HL

Time: Approximately 1300 cycles per dimension
plus 165 cycles overhead

212 ARRAY MANIPULATION

Size:

NDIM:

Program 120 bytes
Data 5 bytes

;POP PARAMETERS
POP HL
LD (RETADR),HL

;QFFSET := 0
LD HL,O
LD (OFFSET),HL

;GET NUMBER OF DIMENSIONS AND TEST FOR 0
POP HL
LD A,L
LD (NUMDIM),A ;GET NUMBER OF DIMENSIONS
OR A ;TEST FOR 0
JR Z,ADBASE ;RETURN WITH BASE ADDRESS IN HL

; IF THERE ARE NO DIMENSIONS

;LOOP ON EACH DIMENSION
; DOING OFFSET := OFFSET + (SUBSCRIPT * SIZE)

LOOP:
POP
POP
CALL
LD
DEC
JR

DE
HL
NXTOFF
HL,NUMDIM
(HL)
NZ,LOOP

;GET SIZE
;GET SUBSCRIPT
;OFFSET := OFFSET + (SUBSCRIPT * SIZE)

,DECREMENT NUMBER OF DIMENSIONS
,CONTINUE THROUGH ALL DIMENSIONS

ADBASE:
,CALCULATE STARTING ADDRESS OF ELEMENT
,OFFSET = BASE + OFFSET
LD HL,(OFFSET)
POP DE ;GET BASE ADDRESS
ADD HL,DE ,SUM WITH OFFSET

;RESTORE RETURN ADDRESS AND EXIT
LD DE, (RETADR)
PUSH DE
RET

;------------------------------
,SUBROUTINE NXTOFF
; PURPOSE: OFFSET := OFFSET + (SUBSCRIPT * SIZE);
,ENTRY: OFFSET = CURRENT OFFSET

DE = CURRENT SIZE OF THIS DIMEMSION
; HL = CURRENT SUBSCRIPT
;EXIT: OFFSET = OFFSET + (SUBSCRIPT + SIZE);
,REGISTERS USED: AF, BC, DE, HL
;------------------------------

5E N-DIMENSIONAL ARRAY INDEXING (NDIM) 213

OF 2 LESS THAN 256

;SAVE CURRENT SUBSCRIPT IN STACK

;HIGH BYTE = 0 ?
;JUMP IF SIZE IS LARGE

;MULTIPLY SUBSCRIPT BY 2
;CONTINUE UNTIL DONE
;DONE SO ADD OFFSET + SUBSCRIPT

;JUMP IF SIZE IS A POWER OF 2
; INCREMENT TO NEXT BYTE OF EASYAY
; INCREMENT SHIFT COUNTER
;DECREMENT COUNT
;JUMP IF SIZE IS NOT EASY

;A = LOW BYTE OF SIZE
;HL = BASE ADDRESS OF EASYAY
;B = SIZE OF EASY ARRAY
;C = SHIFT COUNTER

HL,HL
SHIFT
ADDOFF

;GET SUBSCRIPT
;GET NUMBER OF SHIFTS
;TEST FOR 0
;JUMP IF SHIFT FACTOR = 0

;ELEMENT SIZE * SUBSCRIPT REDUCES TO LEFT SHIFTS
LD B,A ;B = SHIFT COUNT

ADD
DJNZ
JR

NXTOFF:
PUSH HL

; CHECK IF SIZE IS POWER
LD A,D
OR A
JR NZ,BIGSZ

LD A,E
LD HL,EASYAY
LD B,SZEASY
LD C,O

EASYLP:
CP (HL)
JR Z,ISEASY
INC HL
INC C
DJNZ EASYLP
JR BIGSZ

ISEASY:
POP HL
LD A,C
OR A
JR Z,ADDOFF

SHIFT:

;SIZE IS NOT POWER OF 2, MULTIPLY
; ELEMENT SIZE TIMES SUBSCRIPT THE HARD WAY
POP BC ;GET SUBSCRIPT

;MULTIPLY FIRST SUBSCRIPT * ROW LENGTH USING SHIFT AND ADD
; ALGORITHM. RESULT IS IN HL
; BC = SUBSCRIPT (MULTIPLICAND)
; DE = SIZE (MULTIPLIER)
LD HL,O ;PRODUCT = 0
LD A,lS ;COUNT = BIT LENGTH - 1

BIGSZ:

t1LP:

MLPl :

SLA
RL
JR
ADD
ADD
DEC
JR
; ADD
OR
JP

E
D
NC,MLP1
HL,BC
HL,HL
A
NZ,MLP

IN MULTIPLICAND
D
P,ADDOFF

;SHIFT LOW BYTE OF MULTIPLIER
;ROTATE HIGH BYTE OF MULTIPLIER
;JUMP IF MSB OF MULTIPLIER = 0
;ADD MULTIPLICAND TO PARTIAL PRODUCT
;SHIFT PARTIAL PRODUCT

;CONTINUE THROUGH 15 BITS
LAST TIME IF MSB OF MULTIPLIER IS 1

;SIGN FLAG = MSB OF MULTIPLIER

214 ARRAY MANIPULATION

ADD HL,BC ;ADD IN MULTIPLICAND IF SIGN 1

;ADD SUBSCRIPT * SIZE TO OFFSET
ADDOFF:

EX DE,HL
LD HL, (QFFSET) ;GET OFFSET
ADD HL,DE ;ADD PRODUCT OF SUBSCRIPT * SIZE
LD (OFFSET),HL ;SAVE OFFSET
RET

EASYAY: ;SHIFT FACTOR
DB 1 ;0
DB 2 ; 1
DB 4 ;2
DB 8 ;3
DB 16 ;4
DB 32 ;5
DB 64 ;6
DB 128 ;7

SZEASY EQU $-EASYAY

; DATA
RETADR DS 2 ; TEMPORARY FOR RETURN ADDRESS
OFFSET DS 2 ; TEMPORARY FOR PARTIAL OFFSET
NUMDIM DS 1 ;NUMBER OF DIMENSIONS

SAMPLE EXECUTION:

SCSE:
;FIND ADDRESS OF AY1[1,3,OJ

SINCE LOWER BOUNDS OF ARRAY 1 ARE ALL ZERO IT IS NOT
NECESSARY TO NORMALIZE THEM

;PUSH BASE ADDRESS OF ARRAY 1
LD HL,AY1
PUSH HL

; PUSH SUBSCRIPT/SIZE FOR DIMENSION 1
LD HL,1
PUSH HL ; SUBSCRIPT
LD HL,AISZ1
PUSH HL ;SIZE

; PUSH SUBSCRIPT/SIZE FOR DIMENSION 2
LD HL,3
PUSH HL ; SUBSCRIPT
LD HL,AISZ2
PUSH HL ;SIZE

,PUSH SUBSCRIPT/SIZE FOR DIMENSION 3
LD HL,O

PUSH
LD
PUSH

HL
HL,A1SZ3
HL

5E N-DIMENSIONAL ARRAY INDEXING (NDIM) 215

; SUBSCRIPT

;SIZE

;PUSH NUMBER OF DIMENSIONS
LD HL,A1DIM
PUSH HL
CALL NDIM ;CALCULATE ADDRESS

;AY STARTING ADDRESS OF ARY1(1,3,0)
= ARY + (1*126) + (3*21) + (0*3)
= ARY + 189

;CALCULATE ADDRESS OF AY2[-1,6J
SINCE LOWER BOUNDS OF AY2 DO NOT START AT 0, SUBSCRIPTS
MUST BE NORMALIZED

;PUSH BASE ADDRESS OF ARRAY 2
LD HL,AY2
PUSH HL

; PUSH (SUBSCRIPT - LOWER BOUND)/SIZE FOR DIMENSION
LD HL,-1
LD DE,-A2D1L ;NEGATIVE OF LOWER BOUND
ADD HL,DE ;ADD NEGATIVE TO NORMALIZE TO 0
PUSH HL ; SUBSCRIPT
LD HL,A2SZ1
PUSH HL ;SIZE

; PUSH (SUBSCRIPT - LOWER BOUND)/SIZE FOR DIMENSION 2
LD HL,6
LD DE,-A2D2L ;NEGATIVE OF LOWER BOUND
ADD HL,DE ;ADD NEGATIVE TO NORMALIZE TO 0
PUSH HL ; SUBSCRIPT
LD HL,A2SZ2
PUSH HL ;SIZE

; PUSH NUMBER OF DIMENSIONS
LD HL,A2DIM
PUSH HL

CALL NDIM ;CALCULATE ADDRESS
;AY=STARTING ADDRESS OF ARY1(-1,6)

=ARY+«(-1)-(-5»*18)+«6-2)*2)
=ARY + 80

.JR SC5E

; DATA
;AY1 : ARRAY[A1D1L •• A1D1H,A1D2L •• A1D2H,A1D3L .. A1D3H] 3-BYTE ELEMENTS.,
A1DIM
A1D1L
A1D1H
A1D2L
A1D2H

[0 3 0 5 0 6]

EQU 3 ;NUMBER OF DIMENSIONS
EQU 0 ;LOW BOUND OF DIMENSION 1
EQU 3 ;HIGH BOUND OF DIMENSION 1
EQU 0 ;LOW BOUND OF DIMENSION 2
EQU 5 ;HIGH BOUND OF DIMENSION 2

216 ARRAY MANIPULATION

A1D3L EQU 0 ;LOW BOUND OF DIMENSION 3
A1D3H EQU 6 ;HIGH BOUND OF DIMENSION 3
A1SZ3 EQU 3 ;SIZE OF ELEMENT IN DIMENSION 3
A1SZ2 EQU «A1D3H-A1D3L)+1)*A1SZ3 ;SIZE OF ELEMENT IN DIMENSION 2
A1SZ1 EQU «A1D2H-A1D2L)+1)*A1SZ2 ;SIZE OF ELEMENT IN DIMENSION 1
AY1 : OS «A1D1H-A1D1L)+1)*A1SZ1 ; ARRAY

;AY2 : ARRAYCA1D1L •• A1D1H,A1D2L •• A1D2HJ OF WORD
; C -5 •• -1 2 .. 10]
A2DIM EQU 2 ;NUMBER OF DIMENSIONS
A2D1L EQU -5 ;LOW BOUND OF DIMENSION 1
A2D1H EQU -1 ;HIGH BOUND OF DIMENSION 1
A2D2L EQU 2 ;LOW BOUND OF DIMENSION 2
A2D2H EQU 10 ;HIGH BOUND OF DIMENSION 2
A2SZ2 EQU 2 ;SIZE OF ELEMENT IN DIMENSION 2
A2SZ1 EQU «A2D2H-A2D2L)+1)*A2SZ2 ;SIZE OF ELEMENT IN DIMENSION 1
AY2: DS «A2D1H-A2D1L)+1)*A2SZ1 ; ARRAY

END

16·Bit Multiplication (MUL16) 6A

Multiplies two 16-bit operands and returns
the less significant (l6-bit) word of the product.

Procedure: The program uses an ordinary
shift-and-add algorithm, adding the multipli
cand to the partial product each time it finds a I
bit in the multiplier. The partial product and the
multiplier are shifted left 15 times (the number
of bits in the multiplier minus I) to produce
proper alignment. The more significant 16 bits
of the product are lost.

Entry Conditions

Multiplicand in HL
Multiplier in DE

Examples

Registers Used: AF, Be, DE, HL

Execution Time: Approximately 865 to 965 cycles,
depending largely on the number of 1 bits in the
multiplier

Program Size: 22 bytes

Data Memory Required: None

Exit Conditions

Less significant word of product in HL

Note that MULI6 returns only the less signif
icant word of the product to maintain compati-

Result:

2. Data:I. Data:

Result:

Multiplier = 0012 16
Multiplicand = 0301 16

Product = 44B2 16

The more significant word is O.

Multiplier = 3701 16
MUltiplicand = A045 16

Product AB55 16

This is actually the less significant 16-bit word
of the 32-bit product 22FIAB55 16•

bility with other 16-bit arithmetic operations.
The more significant word of the product is lost.

Title
Name:

Put-pose:

16-bit Multiplication
MUL16

Multiply 2 signed or unsigned 16-bit words and
return a 16-bit signed or unsigned product

217

218 ARITHMETIC

Answers needing more than 16 bits: bits higher
than bit 15 are lost

Register L
Register H
Register E =
Register D

Low byte of multiplicand
High byte of multiplicand
Low byte of multiplier
High byte of multiplier

Exit: Product = multiplicand * multiplier
Register L = Low byte of product
Register H = High byte of product

Registers used: AF,BC,DE,HL

JINITIALIZE PARTIAL PRODUCT, BIT COUNT
MULI6:

Time:

Size:

LD
LD
LD
LD

C,L
B,H
HL,O
A,15

Approximately 865 to 965 cycles

Program 22 bytes

JBC = MULTIPLIER

:PRODUCT = 0
:COUNT = BIT LENGTH - 1

JSHIFT-AND-ADD ALGORITHM
IF MSB OF MULTIPLIER IS 1, ADD MULTIPLICAND TO PARTIAL

: PRODUCT
J SHIFT PARTIAL PRODUCT, MULTIPLIER LEFT 1 BIT

I1LP:
SLA E JSHIFT MULTIPLIER LEFT 1 BIT
RL D
JR NC,MLPI JJUMP IF MSB OF MULTIPLIER = 0
ADD HL,BC JADD MULTIPLICAND TO PARTIAL PRODUCT

MLPI :
ADD HL,HL JSHIFT PARTIAL PRODUCT LEFT
DEC A
JR NZ,MLP JCONTINUE UNTIL COUNT = 0

JADD MULTIPLICAND ONE LAST TIME IF MSB OF MULTIPLIER IS 1

OR 0 SIGN FLAG = MSB OF MULTIPLIER
RET P EXIT IF MSB OF MULTIPLIER IS 0
ADD HL,BC ADD MULTIPLICAND TO PRODUCT
RET

SAMPLE EXECUTION:

SC6A:
LD
LD
CALL

HL,-2
DE, 1023
MUL16

6A 16-81T MULTIPLICATION (MUL16) 219

;HL = MULTIPLICAND
;DE = MULTIPLIER
; 16-BIT MULTIPLY
;RESULT OF 1023 * -2 = -2046 OF802H

REGISTER L 02H
H = F8H

JR SC6A

END

16·Bit Division (SDIV16, UDIV16) 68

Divides two 16-bit operands and returns the
quotient and the remainder. There are two entry
points: SDIVI6 divides two 16-bit signed oper
ands, whereas UDIVI6 divides two 16-bit un
signed operands. If the divisor is 0, the Carry
flag is set to I and both quotient and remainder
are set to 0; otherwise, the Carry flag is cleared.

Procedure: If the operands are signed, the
program determines the sign of the quotient and
takes the absolute values of any negative oper
ands. It must also retain the sign ofthe dividend,
since that determines the sign of the remainder.
The program then performs an unsigned division
using a shift-and-subtract algorithm. It shifts
the quotient and dividend left, placing a I bit in
the quotient each time a trial subtraction is
successful. If the operands are signed, the program
must negate (that is, subtract from 0) the
quotient or remainder if either is negative. The

Entry Conditions

Dividend in HL
Divisor in DE

Examples

I. Data: Dividend = 03EO l6
Divisor 00B6 J6

Result: Quotient (from UDIVI6) = 0005 16
Remainder (from UDIVI6) = 0052 16
Carry = 0 (no divide-by-O error)

220

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 1770 to 2340 cycles,
depending largely on how many trial subtractions are
successful and thus require the replacement of the
previous dividend by the remainder

Program Size: 104 bytes

Data Memory Required: 3 bytes anywhere in
RAM for the sign of the quotient (address SQUaT),
the sign of the remainder (address SREM), and a
divide loop counter (address COUNT)

Special Case: If the divisor is 0, the program
returns with the Carry set to I, and both the quotient
and the remainder set to O.

Carry flag is cleared if the division is proper and
set if the divisor is O. A 0 divisor also causes a
return with the quotient and remainder both set
to O.

Exit Conditions

Quotient in HL
Remainder in DE
If the divisor is non-zero, Carry = 0 and the

result is normal.
If the divisor is 0, Carry = I and both quotient

and remainder are 0000.

2. Data: Dividend = D73A I6
Divisor = 02FI 16

Result: Quotient (from SDIVI6) = FFF3 16
Remainder (from SDIVI6) = FD77 16
Carry = 0 (no divide-by-O error)

The remainder of a signed division may be
either positive or negative. In this procedure, the
remainder always takes the sign of the dividend.
A negative remainder can easily be converted
into one that is always positive. Simply subtract

68 16-81T DIVISION (SDIV16, UDIV16) 221

1 from the quotient and add the divisor to the
remainder. The result of Example 2 is then

Quotient = FFF2 16 = -14 10
Remainder (always positive) = 0068 16

Title
Name:

Purpose:

16-bit Division
SDIV16, UDIV16

SDIV16
Divide 2 signed 16-bit words and return a
16-bit signed quotient and remainder

UDIV16
Divide 2 unsigned 16-bit words and return a
16-bit unsigned quotient and remainder

Entry:

Exit:

Register L
Register H
Register E =
Register D

Register L
Register H
Register E
Register D

Low byte of dividend
High byte of dividend
Low byte of divisor
High byte of divisor

Low byte of quotient
High byte of quotient
Low byte of remainder
High byte of remainder

If no errors then
carry := 0

else
divide-by-zero error
carry : = 1
quot ient : = (I

remainder := 0

Registers used: AF,BC,DE,HL

Time:

Size:

Approximately 1770 to 2340 cycles

Program 108 bytes
Data 3 bytes

222 ARITHMETIC

SDIV16:
;SIGNED DIVISION

;DETERMINE SIGN OF QUOTIENT BY EXCLUSIVE ORING HIGH BYTES
; OF DIVIDEND AND DIVISOR. QUOTIENT IS POSITIVE IF SIGNS
; ARE THE SAME, NEGATIVE IF SIGNS ARE DIFFERENT
,
;REMAINDER HAS SAME
LD A,H
LD (SREM),A
XOR D
LD (SQUOT),A

SIGN AS DIVIDEND
;GET HIGH BYTE OF DIVIDEND
;SAVE AS SIGN OF REMAINDER
;EXCLUSIVE OR WITH HIGH BYTE OF DIVISOR
;SAVE SIGN OF QUOTIENT

;TAKE ABSOLUTE VALUE OF DIVISOR

;TAKE ABSOLUTE VALUE OF DIVIDEND
CHKDE:

LD
OR
,..IP
SUB
SUB
LD
SBC
SUB
LD

LD
OR
,JP
SUB
SUB
LD
SBC
SUB
LD

A,D
A
P,CHKDE
A
E
E,A
A,A
D
D,A

A,H
A
P,DODIV
A
L
L,A
A,A
H
H,A

;JUMP IF DIVISOR IS POSITIVE
;SUBTRACT DIVISOR FROM ZERO

;PROPAGATE BORROW (A=FF IF BORROW)

;JUMP IF DIVIDEND IS POSITIVE
;SUBTRACT DIVIDEND FROM ZERO

;PROPAGATE BORROW (A=FF IF BORROW)

;DIVIDE ABSOLUTE VALUES
DODIV:

CALL UDIV16
RET C

; NEGATE QUOTIENT IF IT
LD A, (SQUOT)
OR A
,JP P,DOREM
SUB A
SUB L
LD L,A
SBC A,A
SUB H
LD H,A

;EXIT IF DIVIDE BY ZERO

IS NEGATIVE

;,JUMP IF QUOTIENT IS POSITIVE
;SUBTRACT QUOTIENT FROM ZERO

;PROPAGATE BORROW (A=FF IF BORROW)

DOREM:
;NEGATE REMAINDER IF IT IS NEGATIVE
LD A, (SREM)
OR A

;UNSIGNED DIVISION
UDIVI6:

DIVIDE:

RET
SUB
SUB
LD
SBC
SUB
LD
RET

; CHECK
LD
OR
.JR
LD
LD
LD
SCF
RET

LD
LD
LD
LD
OR

P
A
E
E,A
A,A
D
D,A

FOR DIVISION
A,E
D
NZ,DIVIDE
HL,O
D,H
E,L

C,L
A,H
HL,O
B,16
A

6B 16-BIT DIVISION (SDIV16, UDIV16) 223

;RETURN IF REMAINDER IS POSITIVE
;SUBTRACT REMAINDER FROM ZERO

;PROPAGATE BORROW (A=FF IF BORROW)

BY ZERO

;BRANCH IF DIVISOR IS NON-ZERO
;DIVIDE BY 0 ERROR

;SET CARRY, INVALID RESULT

;C = LOW BYTE OF DIVIDEND/QUOTIENT
;A = HIGH BYTE OF DIVIDEND/QUOTIENT
;HL = REMAINDER
;16 BITS IN DIVIDEND
;CLEAR CARRY TO START

DVLOOP:
;SHIFT NEXT BIT OF QUOTIENT INTO BIT 0 OF DIVIDEND
;SHIFT NEXT MOST SIGNIFICANT BIT OF DIVIDEND INTO
; LEAST SIGNIFICANT BIT OF REMAINDER
;BC HOLDS BOTH DIVIDEND AND QUOTIENT. WHILE WE SHIFT A
; BIT FROM MSB OF DIVIDEND, WE SHIFT NEXT BIT OF QUOTIENT
; IN FROM CARRY
;HL HOLDS REMAINDER
,
;00 A 32-BIT LEFT SHIFT, SHIFTING
; CARRY TO C, C TO A, A TO L, L TO H
RL C ;CARRY (NEXT BIT OF QUOTIENT) TO BIT 0,
RLA ; SHIFT REMAINING BYTES
RL L
RL H ;CLEARS CARRY SINCE HL WAS 0

;IF REMAINDER IS GREATER THAN OR EQUAL TO DIVISOR, NEXT
; BIT OF QUOTIENT IS 1. THIS BIT GOES TO CARRY
PUSH HL ;SAVE CURRENT REMAINDER
SBC HL,DE ;SUBTRACT DIVISOR FROM REMAINDER
CCF ;COMPLEMENT BORROW SO 1 INDICATES

; A SUCCESSFUL SUBTRACTION
; (THIS IS NEXT BIT OF QUOTIENT)

JR C,DROP ;JUMP IF REMAINDER IS)= DIVIDEND
EX (SP),HL ;OTHERWISE RESTORE REMAINDER

224 ARITHMETIC

DROP:
INC SP ~DROP REMAINDER FROM TOP OF STACK
INC SP
DJNZ DVLOOP ~CONTINUE UNTIL ALL BITS DONE

~SHIFT LAST CARRY BIT INTO QUOTIENT
EX DE,HL ~DE = REMAINDER
RL C ;CARRY TO C
LD L,C ;L = LOW BYTE OF QUOTIENT
RLA
LD H,A ;H = HIGH BYTE OF QUOTIENT
OR A ;CLEAR CARRY, VALID RESULT
RET

; DATA
SQUOT: DS 1 ;SIGN OF QUOTIENT
SREM: DS 1 ;SIGN OF REMAINDER
COUNT: DS 1 ;DIVIDE LOOP COUNTER

SAMPLE EXECUTION:

8(:6B:

LD
LD
CALL

LD
LD
CALL

HL,-1023
DE, 123
SDIV16

HL,64513
DE, 123
UDIV16

;SIGNED DIVISION
; HL = DIVIDEND
; DE = DIVISOR
;QUOTIENT OF -1023 I 123 = -8
; L = F8H
; H = FFH
;REMAINDER OF -1023 I 123 = -39
; E = D9H
; D = FFH

;UNSIGNED DIVISION
; HL = DIVIDEND
; DE = DIVISOR
;QUOTIENT OF 64513 I 123 = 524
; L = OCH
; H = 02H
;REMAINDER OF 64513 I 123 = 61
; E = 3DH
; D = OOH

..JR SC6B

END

16·Bit Comparison (CMP16) 6C

Compares two 16-bit operands and sets the
flags accordingly. The Zero flag always indicates
whether the numbers are equal. If the operands
are unsigned, the Carry flag indicates which is
larger (Carry 1 if subtrahend is larger and 0
otherwise). If the operands are signed, the Sign
flag indicates which is larger (Sign= 1 if subtra
hend is larger and 0 otherwise); two's comple
ment overflow is considered and the Sign flag is
inverted if it occurs.

Procedure: The program subtracts the subtra
hend from the minuend. If two's complement
overflow occurs (Parity / Overflow flag = 1), the
program inverts the Sign flag by EXCLUSIVE
ORing the sign bit with 1. This requires an extra
right shift to retain the Carry in bit 7 initially,
since XOR always clears Carry. The program
then sets Carry to ensure a non-zero result and
shifts the data back to the left. The extra left

Entry Conditions

Minuend in HL
Subtrahend in DE

Registers Used: AF, HL

Execution Time: 30 cycles if no overflow, 57 cycles
if overflow

Program Size: II bytes

Data Memory Required: None

shift uses ADC A,A rather than RLA to set the
Sign and Zero flags (RLA would affect only
Carry). Bit 0 of the accumulator must be 1 after
the shift (because the Carry was set), thus
ensuring that the Zero flag is cleared. Obviously,
the result cannot be 0 if the subtraction causes
two's complement overflow. Note that after an
addition or subtraction, PE (Parity/Overflow
flag = 1) means "overflow set" while PO
(Parity/ Overflow flag = 0) means "overflow
clear."

Exit Conditions

Flags set as if subtrahend had been subtracted
from minuend, with a correction if two's comple
ment overflow occurred.

Zero flag= 1ifthe subtrahend and minuend are
equal; 0 if they are not equal.

Carry flag = 1 if subtrahend is larger than
minuend in the unsigned sense; 0 if it is less than
or equal to the minuend.

Sign flag = 1 if subtrahend is larger than
minuend in the signed sense; 0 if it is less than or
equal to the minuend. This flag is corrected
(inverted) if two's complement overflow occurs

225

226 ARITHMETIC

Examples

1. Data: Minuend (HL) = 03EI 16 3. Data:
Subtrahend (DE) = 07E4 16

Result: Carry = I, indicating subtrahend is larger in Result:
unsigned sense.

Zero = 0, indicating operands are not equaL
Sign = I, indicating subtrahend is larger in

signed sense.

Minuend (HL) = A45D I6
Subtrahend (DE) = 77EI 16

Carry = 0, indicating subtrahend is not larger
in unsigned sense.

Zero 0, indicating operands are not equal.
Sign = I, indicating subtrahend is larger in

signed sense.

2. Data:

Result:

Minuend (HL) = C5lA I6
Subtrahend (DE) = C51A I6

Carry= 0, indicating subtrahend is not larger
in unsigned sense.

Zero = I, indicating operands are equaL
Sign = 0, indicating subtrahend is not larger

in signed sense.

In Example 3, the minuend is a negative two's
complement number, whereas the subtrahend is
a positive two's complement number. Subtract
ing produces a positive result (3C7CI6) with
two's complement overflow.

Title
Name:

Purpose:

16-bit Compare
CMP16

Compare 2 16-bit signed or unsigned words and
return the C,Z,S flags set or cleared

Entry: Register L
Register H
Register E
Register D

Low byte of minuend
High byte of minuend
Low byte of subtrahend
High byte of subtrahend

Exit: Flags returned based on minuend - subtrahend
If both the minuend and subtrahend are 2?s

complement numbers, then use the Z and S
flags;

Else use the Z and C flags
IF minuend = subtrahend THEN

Z=l,S=O,C=O
IF minuend > subtrahend THEN

Z=O,S=O,C=O
IF minuend < subtrahend THEN

Z=O,S=l,C=l

Registers used: AF,HL

Time: 30 cycles if no overflow, else 57 cycles

Size:

6C 16-8[T COMPAP[SON (CMP16) 227

Program 11 bytes

CMP16:
OR A
SBC HL,DE
RET PO
LD A,H
RRA
XOR 01000000B
SCF
ADC A,A

RET

;CLEAR CARRY
;SUBTRACT SUBTRAHEND FROM MINUEND
;RETURN IF NO OVERFLOW
;OVERFLOW - INVERT SIGN FLAG
;SAVE CARRY IN BIT 7
;COMPLEMENT BIT 6 (SIGN BIT)
;ENSURE A NON-ZERO RESULT
;RESTORE CARRY, COMPLEMENTED SIGN
; ZERO FLAG = 0 FOR SURE

SC6C:

SAMPLE EXECUTION:

;COMPARE -32768 (8000 HEX) AND 1
;SINCE -32768 IS THE MOST NEGATIVE 16-BIT NUMBER,
, THIS COMPARISON WILL SURELY CAUSE OVERFLOW
LD HL,-32768
LD DE,1
CALL CMP16 ;CY = 0, Z = 0, S

;COMPARE -4 (FFFC HEX) AND -1 (FFFF HEX)
LD HL,-4
LD DE,-l
CALL CMP16 ;CY 1, Z = 0, S 1

;COMPARE -1234 AND -1234
LD HL,-1234
LD DE,-1234
CALL CMP16 ; CY 0, Z 1, S 0

JR SC6C

END

Multiple-Precision Binary Addition

(MPBADD) 6D

Adds two multi-byte unsigned binary num
bers. Both numbers are stored with their least
significant bytes at the lowest address. The sum
replaces the addend. The length of the numbers
(in bytes) is 255 or less.

Procedure: The program clears the Carry flag
initially and adds the operands one byte at a
time, starting with the least significant bytes.
The final Carry flag reflects the addition of the
most significant bytes. A length of 00 causes an
immediate exit with no addition.

Entry Conditions

Base address of addend in HL
Base address of adder in DE
Length of the operands in bytes in B

Example

1. Data: Length of operands (in bytes) = 6
Addend = 19D028AI93EA I6
Adder = 293 EABF059C7 16

Result: Addend = 430ED49IEDBI I6
Carry = 0

Registers Used: AF, B, DE, HL

Execution Time: 46 cycles per byte plus 18 cycles
overhead

Program Size: 11 bytes

Data Memory Required: None

Special Case: A length of 0 causes an immediate
exit with the addend unchanged. The Carry flag is
cleared.

Exit Conditions

Addend replaced by addend plus adder

228

Title
Name:

Purpose:

Multiple-Precision Binary Addition
MPBADD

Add 2 arrays of binary bytes
Array! = Array! + Array2

Entry:

Exit:

6D MULTIPLE-PRECISION BINARY ADDITION (MPBADD) 229

Register pair HL = Base address of array 1
Register pair DE = Base address of array 2
Register B = Length of the arrays

The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAY[OJ is the
least significant byte, and ARRAY[LENGTH-1J
the most significant byte.

Array1 := Array1 + Array2

Registers used: AF,B,DE,HL

~CLEAR CARRY, EXIT IF ARRAY LENGTH IS 0
I-D A,B
AND A ~CLEAR CARRY, TEST ACCUMULATOR
RET Z ~RETURN IF LENGTH = ZERO

MPBADD:

LOOP:

Time:

Size:

LD
ADC
LD
INC
INC
DJNZ
RET

A, (DE)
A, (HL)
(HL),A
HL
DE
LOOP

46 cycles per byte plus 18 cycles overhead

Program 11 bytes

;GET NEXT BYTE
;ADD BYTES
~STORE SUM
~INCREMENT ARRAY1 POINTER
~INCREMENT ARRAY2 POINTER
~CONTINUE UNTIL COUNTER = 0

SAMPLE EXECUTION:

SC6D:
LD
LD
LD
CALL

HL,AY1
DE,AY2
B,SZAYS
MPBADD

~HL = BASE ADDRESS OF ARRAY 1
~DE = BASE ADDRESS OF ARRAY 2
~B = LENGTH OF ARRAYS IN BYTES
~ADD THE ARRAYS

AY1+0 56H
AY1+1 = 13H
AY1+2 CFH
AY1+3 8AH
AY1+4 = 67H
AY1+5 45H
AY1+6 23H
AY1+7 01H

230 ARITHMETIC

.JR SC6D

SZAYS EQU 8 ;LENGTH OF ARRAYS IN BYTES
AY1:

DB OEFH
DB OCDH
DB OABH
DB 089H
DB 067H
DB 045H
DB 023H
DB 00lH

AY2:
DB 067H
DB 045H
DB 023H
DB 00lH
DB 0
DB 0
DB 0
DB 0

END

Multiple-Precision Binary Subtraction

(MPBSUB) 6E

Subtracts two multi-byte unsigned binary
numbers. Both numbers are stored with their
least significant bytes at the lowest address. The
difference replaces the minuend. The length of
the numbers (in bytes) is 255 or less.

Procedure: The program clears the Carry flag
initially and subtracts the operands one byte at a
time, starting with the least significant bytes.
The final Carry flag reflects the subtraction of
the most significant bytes. A length of 0 causes
an immediate exit with no subtraction.

Entry Conditions

Base address of minuend in HL
Base address of subtrahend in DE
Length of the operands in bytes in B

Example

1. Data: Length of operands (in bytes) = 4
Minuend = 2F5BA7C3 16
Subtrahend = 14DF35B8 16

Result: Minuend = lA7CnOB 16
The Carry flag is set to 0 since no borrow is

necessary.

Registers Used: AF, B, DE, HL

Execution Time: 46 cycles per byte plus 22 cycles
overhead

Program Size: 12 bytes

Data Memory Required: None

Special Case: A length of 0 causes an immediate
exit with the minuend unchanged (that is, the
difference is equal to the minuend). The Carry flag is
cleared.

Exit Conditions

Minuend replaced by minuend minus subtrahend

Title
Name:

Multiple-Precision Binary Subtraction
MPBSUB

231

232 ARITHMETIC

Purpose:

Exit:

Subtract 2 arrays of binary bytes
Minuend = minuend - subtrahend

Register pair HL = Base address of minuend
Register pair DE = Base address of subtrahend
Register B = Length of the arrays

The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAY[OJ is the
least significant byte, and ARRAY[LENGTH-IJ
the most significant byte.

Minuend := minuend - subtrahend

Registers used: AF,B,DE,HL

A, (DE)
A, (HL)
(DE),A
DE
HL
LOOP

MPBSUB:

LOOP:

Time:

Size:

; CLEAR
LD
AND
RET
EX

LD
SBC
LD
INC
INC
D,JNZ
RET

CARRY,
A,B
A
Z
DE,HL

46 cycles per byte plus 22 cycles overhead

"Program 12 bytes

EXIT IF ARRAY LENGTH IS 0

;ClEAR CARRY, TEST ACCUMULATOR
;RETURN IF LENGTH = ZERO
;SWITCH ARRAY POINTERS
; SO HL POINTS TO SUBTRAHEND

;GET NEXT BYTE OF MINUEND
;SUBTRACT BYTES
;STORE DIFFERENCE
; INCREMENT MINUEND POINTER
; INCREMENT SUBTRAHEND POINTER
;CONTINUE UNTIL COUNTER = 0

SAMPLE EXECUTION:

SC6E:
LD
LD
LD
CALL

HL,AYI
DE,AY2
B,SZAYS
MPBSUB

;HL = BASE ADDRESS OF MINUEND
;DE = BASE ADDRESS OF SUBTRAHEND
;B = LENGTH OF ARRAYS IN BYTES
;SUBTRACT THE ARRAYS

AY1+0 88H
AYl+l = 88H
AY1+2 = 88H

JR

SZAYS EQU
AYl :

DB
DB
DB
DB
DB
DB
DB
DB

AY2:
DB
DB
DB
DB
DB
DB
DB
DB

END

6E MULTIPLE-PRECISION BINARY SUBTRACTION (MPBSUB) 233

AY1+3 = 88H
AY1+4 67H
AY1+5 45H
AY1+6 23H
AYl+7 01H

SC6E

8 ; LENGTH OF ARRAYS I N BYTES

OEFH
OCDH
OABH
089H
067H
045H
023H
00lH

067H
045H
023H
00lH
o
o
o
o

Multiple-Precision Binary Multiplication

(MPBMUL) 6F

Multiplies two multi-byte unsigned binary
numbers. Both numbers are stored with their
least significant byte at the lowest address. The
product replaces the multiplicand. The length of
the numbers (in bytes) is 255 or less. Only the
less significant bytes of the product are returned
to retain compatibility with other multiple
precision binary operations.

Procedure: The program uses an ordinary
shift-and-add algorithm, adding the multiplier to
the partial product each time it finds a 1bit in the
multiplicand. The partial product and the multi
plicand are shifted through the bit length plus 1;
the extra loop moves the final Carry into the
product. The program maintains a full double
length unsigned partial product in memory
locations starting at HIPROD (more significant
bytes) and in the multiplicand (less significant
bytes). The less significant bytes of the product
replace the multiplicand as it is shifted and

Entry Conditions

Base address of multiplicand in HL
Base address of multiplier in DE
Length of the operands in bytes in B

Example

I. Data: Length of operands (in bytes) = 04
Multiplicand = 0005DI F7 16
Multiplier = OOOOOAB 116

Result: Multiplicand = .3E39DIC7 16

Note that MPBMUL returns only the less
significant bytes (that is, the number of bytes in
the multiplicand and multiplier) of the product

234

Registers Used: AF, BC, DE, HL

Execution Time: Depends on the length of the
operands and on the number of I bits in the
multiplicand (requiring actual additions). If the
average number of I bits in the multiplicand is four
per byte, the execution time is approximately 728 *
LENGTH2 + 883 * LENGTH + 300 cycles where
LENGTH is the number of bytes in the operands.

Program Size: 104 bytes

Data Memory Required: 261 bytes anywhere in
RAM. This is temporary storage for the more
significant bytes of the product (255 bytes starting at
address HIPROD), the loop counter (2 bytes starting
at address COUNT), the address immediately follow
ing the most significant byte of the high product (2
bytes starting at address ENDHP), and the base
address of the multiplier (2 bytes starting at address
MLIER).

Special Case: A length of 0 causes an immediate
exit with the product equal to the multiplicand. The
Carry flag is cleared.

examined for 1 bits. A 0 length causes an exit
with no multiplication.

Exit Conditions

Multiplicand replaced by multiplicand times
multiplier

to maintain compatibility with other multiple
precision arithmetic operations. The more signif
icant bits of the product are available starting
with their least significant byte at address
HIPROD. The user may need to check those
bytes for a possible overflow or extend the
operands with additional zeros.

Title
Name:

Purpose:

Entry:

Exit:

6F MULTIPLE-pr<EClSION BINARY MULTIPLICATION (MPBMUL) 235

Multiple-Precision Binary Multiplication
MPBMUL

Multiply 2 arrays of binary bytes
Multiplicand =multiplicand * multiplier

Register pair HL = Base address of multiplicand
Register pair DE = Base address of multiplier
Reoister B = Length of the arrays

The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAYCOJ is the
least significant byte, and ARRAYCLENGTH-1J
the most significant byte.

Multiplicand := multiplicand * multiplier

Registers used: AF,BC,DE,HL

Time:

Size:

'rr

Assuming the average number of 1 bits in multi
plicand is 4 * length, then the time is approxi-;
mately

(728 * len~thA2) + (883 * length) + 300 cycles

Program 104 bytes
Data 261 bytes

MPBMUL:
;EXIT IF LENGTH IS ZERO
LD A,B
AND A ;IS LENGTH OF ARRAYS O?
RET Z ;YES, EXIT

;MAKE POINTERS POINT
LD C,B
LD B,O
ADD HL,BC
EX DE,HL
LD (MLIER),HL
LD HL.HIPROD
ADD HL,BC
LD <ENDHP),HL

TO END OF OPERANDS
;BC = LENGTH

;END = BASE + LENGTH
;DE POINTS TO END OF MULTIPLICAND
;SAVE ADDRESS OF MULTIPLIER

;SAVE ADDRESS AT END OF HIPROD

;SET COUNT TO NUMBER OF BITS IN ARRAY PLUS 1
; COUNT := (LENGTH * 8) + 1

236 ARITHMETIC

LD
LD
ADD
ADD
ADD
INC
LD

L,C
H,B
HL,HL
HL,HL
HL,HL
HL
(COUNT),HL

;MOVE LENGTH TO HL

;LENGTH * 8, SHIFT LEFT 3 TIMES

;ADD 1
;SAVE NUMBER OF BITS TO DO

;ZERO HIGH PRODUCT ARRAY

;MULTIPLY USING SHIFT AND ADD ALGORITHM
AND A ;CLEAR CARRY FIRST TIME THROUGH

;SHIFT CARRY INTO HIPROD ARRAY AND LEAST SIGNIFICANT
; BIT OF HIPROD ARRAY TO CARRY
LD B, C ; GET LENGTH I N BYTES
LD HL,(ENDHP) ;GET LAST BYTE OF HIPROD + 1

;SHIFT CARRY (NEXT BIT OF LOWER PRODUCT) INTO MOST
; SIGNIFICANT BIT OF MULTIPLICAND.
; THIS ALSO SHIFTS NEXT BIT OF MULTIPLICAND TO CARRY
LD L,E ;HL = ADDRESS OF END OF MULTIPLICAND
LD H,D
LD B, C ; B = LENGTH IN BYTES

ZEROPD:

ZEROLP:

LOOP:

SRPLP:

SRAILP:

LD
LD

LD
INC
D,JNZ

DEC
RR
D,JNZ

DEC
RR
D...INZ

B,C
HL,HIPROD

(HL),O
HL
ZEROLP

HL
(HL)
SRPLP

HL
(HL)
SRAILP

;B = LENGTH IN BYTES
;GET ADDRESS OF HIPROD

;STORE 0

;CONTINUE UNTIL HIPROD ARRAY IS ZERO

;BACK UP TO NEXT BYTE

;CONTINUE UNTIL INDEX = 0

;BACK UP TO NEXT BYTE

;CONTINUE UNTIL DONE

;IF NEXT BIT OF MULTIPLICAND IS 1 THEN
, ADD MULTIPLIER TO HIPROD ARRAY
,JP NC,DECCNT ;,JUMP IF NEXT BIT IS ZERO

ADDLP:

;ADD
PUSH
LD
LD
LD
AND

LD
ADC
LD
INC

MULTIPLIER TO
DE
DE, (MLIER)
HL,HIPROD
B,C
A

A, (DE)
A, (HL)
(HL),A
DE

HIPROD
;SAVE ADDRESS OF MULTIPLICAND
;DE = ADDRESS OF MULTIPLIER
;HL = ADDRESS OF HIPROD
;B = LENGTH IN BYTES
;CLEAR CARRY

GET NEXT MULTIPLIER BYTE
ADD TO HIPROD
STORE NEW HIPROD

INC
DJNZ
POP

HL
ADDLP
DE

MULTIPLE· PRECISION BINAfN MULTIPLICATION (MPBMUL) 237

;CONTINUE UNTIL DONE
;RESTORE ADDRESS OF MULTIPLICAND

DECCNT:

;DECREMENT BIT COUNTER, EXIT IF DONE
; DOES NOT CHANGE CARRY!

LD A, (COUNT)
DEC A
LD (COUNT),A
JP NZ,LOOP ; BRANCH IF LSB OF COUNT NOT ZERO
PUSH AF ;SAVE CARRY
LD A, (COUNT+1) ;GET HIGH BYTE OF COUNT
AND A ; IS IT ZERO?
,JP Z,EXIT ~ EXIT IF SO
DEC A ;DECREMENT HIGH BYTE OF COUNT
LD (COUNT+1), A
POP AF ~RESTORE CARRY
,JP LOOP ~CONTINUE

EXIT:
POP AF ~DROP PSW FROM STACK
RET ~RETURN

~DATA

COUNT: DS 2 ;TEMPORARY FOR LOOP COUNTER
ENDHP: DS 2 ~ADDRESS OF LAST BYTE OF HIPROD + 1
MLIER: DS 2 ;ADDRESS OF MULTIPLIER
HIPROD: DS 255 ;HIGH PRODUCT BUFFER

SAMPLE EXECUTION:

SC6F:
LD
LD
LD
CALL

HL,AYl
DE,AY2
B,SZAYS
MPBMUL

~HL = ADDRESS OF MULTIPLICAND
;DE = ADDRESS OF MULTIPLIER
;B = LENGTH OF OPERANDS IN BYTES
;MULTIPLE-PRECISION BINARY MULTIPLY
;RESULT OF 12345H * 1234H = 14B60404H

IN MEMORY AYl 04H
AY1+l 04H
AY1+2 B6H
AY1+3 14H
AY1+4 OOH
AYl+5 OOH
AY1+6 OOH

.JR SC6F

SZAYS EQU 7 ;LENGTH OF OPERANDS IN BYTES

238 ARITHMETIC

AYl :
DB 045H
DB 023H
DB 00lH
DB 0
DB 0
DB 0
DB 0

AY2:
DB 034H
DB 012H
DB 0
DB 0
DB 0
DB 0
DB 0

END

Multiple-Precision Binary Division

(MPBDIV) 6G

Divides two multi-byte unsigned binary
numbers. Both numbers are stored with their
least significant byte at the lowest address. The
quotient replaces the dividend; the address of
the least significant byte of the remainder is in
HL. The length of the numbers (in bytes) is 255
or less. The Carry flag is cleared if no errors
occur; if a divide by 0 is attempted, the Carry
flag is set to 1, the dividend is left unchanged,
and the remainder is set to O.

Procedure: The program divides with the

R@gisters Used: AF; BC, DE, HL

Executiorl Time: Depends on the length of the
operands and on"ibenumber of I bits in the quotient
(requiring a buffer switch), If the average number of
I bits in the quotient is 4 per byte, the execution time
is approximately 1176 * LENGTH2+ 2038 * LENGTH
+ 515 cycles where LENGTH is the number of bytes
in the operands.

Program Size: 161 bytes

Data Memory Required: 522 bytes anywhere in
RAM. This is temporary storage for the high divi
dend (255 bytes starting at address H IDE I), the result
of the trial subtraction (255 bytes starting at address
HI DE2), the base address of the dividend (2 bytes

Entry Conditions

Base address of dividend in H L
Base address of divisor in DE
Length of the operands in bytes in B

usual shift-and-subtract algorithm, shifting quo
tient and dividend and placing a I bit in the
quotient each time a trial subtraction is success
ful. An extra buffer holds the result of the trial
subtraction; that buffer is simply switched with
the buffer holding the dividend if the trial
subtraction is successful. The program exits
immediately, setting the Carry flag, if it finds the
divisor to be O. The Carry flag is cleared
otherwise.

starting at address DVEND), the base address of the
divisor (2 bytes starting at address DVSOR), pointers
to the two temporary buffers for the high dividend (2
bytes starting at addresses HDEPTR and ODEPTR,
respectively), a loop counter (2 bytes starting at
address COUNT), and a subtraction loop counter (I
byte at address SUBCNT).

Special Cases:

I. A length of 0 causes an immediate exit with the
Carry flag cleared, the quotient equal to the original
dividend, and the remainder undefined.

2. A divisor of 0 causes an exit with the Carry flag
set to I, the quotient equal to the original dividend,
and the remainder equal to O.

Exit Conditions

Dividend replaced by dividend divided by divisor
If the divisor is non-zero, Carry = 0 and the

result is normal.
If the divisor is 0, Carry = 1, the dividend is

unchanged, and the remainder is O.
The remainder is stored starting with its least

significant byte at the address in HL.

239

240 ARITHMETIC

Example

1" Data: Length of operands (in bytes) = 03
Divisor = 000F45 16
Dividend = 35A2F7 16

Result: Dividend = 000383 16
Remainder (starting at address in HL) =

0003A8 16
Carry flag is 0 to indicate no divide-by-O error.

Title
Name:

Purpose:

Exit:

Multiple-Precision Binary Division
MPBDIV

Divide 2 arrays of binary bytes
Dividend = dividend / divisor

Register pair HL = Base address of dividend
Register pair DE = Base address of divisor
Register B = Length of operands in bytes

The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAY[OJ is the
least significant byte, and ARRAY[LENGTH-1J
the most significant byte.

Dividend := dividend / divisor
Register pair HL = Base address of remainder
If no errors then

carry := 0
ELSE

divide-by-O error
carry : = 1
dividend unchanged
remainder := 0

Registers used: AF,BC,DE,HL

Time:

Size:

Assuming there are length/2 1 bits in the
quotient then the time is approximately
(1176 * length A 2) + (2038 * length) + 515 cycles;

Program 161 bytes
Data 522 bytes

MPBDIV:

6G MULTIPLE-PRECISION BINARY DIVISION (MPBDIV) 241

;TEST LENGTH OF OPERANDS, INITIALIZE POINTERS

LD A,B
OR A ;IS LENGTH OF ARRAYS = O?
,..IP Z,OKEXIT ;EXIT IF SO
LD (DVEND),HL ;SAVE BASE ADDRESS OF DIVIDEND
LD (DVSOR),DE ;SAVE BASE ADDRESS OF DIVISOR
LD C,B ;C = LENGTH OF OPERANDS

;SET COUNT TO NUMBER
; COUNT := (LENGTH *
LD L,C
LD H,O
ADD HL,HL
ADD HL,HL
ADD HL,HL
INC HL
LD (COUNT),HL

OF BITS IN THE ARRAYS
8) + 1

;HL = LENGTH IN BYTES

;LENGTH * 2
;LENGTH * 4
;LENGTH * 8
;LENGTH * 8 + 1
;SAVE BIT COUNT

;ZERO BOTH HIGH DIVIDEND ARRAYS
LD HL,HIDE1 ;HL = ADDRESS OF HIDE1
LD DE,HIDE2 ;DE = ADDRESS OF HIDE2
LD B,C ;B = LENGTH IN BYTES
SUB A ;GET 0 FOR FILL

ZEROLP:
LD
LD
INC
INC
D.JNZ

(HL),A
(DE),A
HL
DE
ZEROLP

;ZERO HIDE1
; AND HIDE2

;SET HIGH DIVIDEND POINTER TO HIDE1
LD HL.HIDE1
LD (HDEPTR),HL

;SET OTHER HIGH DIVIDEND POINTER TO HIDE2
LD HL,HIDE2
LD (ODEPTR),HL

;CHECK IF DIVISOR IS ZERO BY LOGICALLY ORING ALL BYTES
LD HL.(DVSOR) ;HL = ADDRESS OF DIVISOR
LD B,C ;B = LENGTH IN BYTES
SUB A ;START LOGICAL OR AT 0

CHKOLP:
OR
INC
D....NZ
OR
....R

(HL)
HL
CHKOLP
A
Z,EREXIT

;OR NEXT BYTE
; INCREMENT TO NEXT BYTE
;CONTINUE UNTIL ALL BYTES ORED
;SET FLAGS FROM LOGICAL OR
;ERROR EXIT IF DIVISOR IS 0

;DIVIDE USING TRIAL SUBTRACTION ALGORITHM
OR A ;CLEAR CARRY FIRST TIME THROUGH

242 ARITHMETIC

LOOP:
;C = LENGTH
;DE = ADDRESS OF DIVISOR
;CARRY = NEXT BIT OF QUOTIENT
;SHIFT CARRY INTO LOWER DIVIDEND ARRAY AS NEXT BIT OF QUOTIENT
; AND MOST SIGNIFICANT BIT OF LOWER DIVIDEND TO CARRY
LD B,C ;B = NUMBER OF BYTES TO ROTATE
LD HL,(DVEND) ;HL = ADDRESS OF DIVIDEND

SLLPl :
RL
INC
D.....NZ

(HL)
HL
SLLPl

;ROTATE BYTE OF DIVIDEND LEFT
;NEXT BYTE
;CONTINUE UNTIL ALL BYTES SHIFTED

;DECREMENT BIT COUNTER AND EXIT IF DONE
;CARRY IS NOT CHANGED!

DECCNT:
LD
DEC
LD
.....R
LD
DEC
LD
.....P

A, (COUNT)
A
(COUNT),A
NZ,CONT
A, (COUNT+l)
A
(COUNT+l),A
M,OKEXIT

;CONTINUE IF LOWER BYTE NOT ZERO

;EXIT WHEN COUNT BECOMES NEGATIVE

;SHIFT CARRY INTO lSB OF UPPER DIVIDEND
CaNT:

SLLP2:

LD
LD

Rl
INC
D.....NZ

HL,(HDEPTR)
B,C

(HL)
HL
SLLP2

;HL = CURRENT HIGH DIVIDEND POINTER
;8 = LENGTH IN BYTES

;RQTATE BYTE OF UPPER DIVIDEND
; INCREMENT TO NEXT BYTE
;CONTINUE UNTIL ALL BYTES SHIFTED

;NEXT BYTE OF HIGH DIVIDEND
;SUBTRACT DIVISOR
;SAVE IN OTHER HIGH DIVIDEND
; INCREMENT POINTERS

;SUBCNT = LENGTH IN BYTES
;BC = OTHER DIVIDEND
;DE = HIGH DIVIDEND
;HL = DIVISOR
;CLEAR CARRY

;CONTINUE UNTIL DIFFERENCE COMPLETE
;RESTORE LENGTH

;DECREMENT COUNT

A, (DE)
A, (HL)
(BC),A
HL
DE
Be
A, (SUBCNT)
A
(SUBCNT),A
NZ,SUBLP
BC

;SUBTRACT DIVISOR FROM HIGH DIVIDEND, PLACE DIFFERENCE IN
; OTHER HIGH DIVIDEND ARRAY
PUSH BC ;SAVE LENGTH
LD A,C
LD (SUBCNT),A
LD BC,(ODEPTR)
LD DE, (HDEPTR)
LD HL,(DVSOR)
OR A

LD
SBC
LD
INC
INC
INC
LD
DEC
LD
.....R
POP

SUBLP:

6G MULTIPLE-PRECISION BINARY DIVISION (MPBDIV) 243

NC,LOOP
HL,(HDEPTR)
DE, (ODEPTR)
(ODEPTR),HL
(HDEPTR),DE

;IF CARRY IS 1, HIGH DIVIDEND IS LESS THAN DIVISOR
; SO NEXT BIT OF QUOTIENT IS O. IF CARRY IS 0
; NEXT BIT OF QUOTIENT IS 1 AND WE REPLACE DIVIDEND
; WITH REMAINDER BY SWITCHING POINTERS.
CCF ;COMPLEMENT BORROW SO IT EQUALS

; NEXT BIT OF QUOTIENT
;JUMP IF NEXT BIT OF QUOTIENT 0
;OTHERWISE EXCHANGE HDEPTR AND ODEPTR

...IR
LD
LD
LD
LD

;CONTINUE WITH NEXT BIT OF QUOTIENT 1 (CARRY 1)
JP LOOP

;SET CARRY TO INDICATE DIVIDE-BY-ZERO ERROR
EREXIT:

SCF
JP EXIT

;SET CARRY, INVALID RESULT

;CLEAR CARRY TO INDICATE NO ERRORS
OKEXIT:

OR A ;CLEAR CARRY, VALID RESULT

EXIT:

;ARRAY 1 IS QUOTIENT
;HDEPTR CONTAINS ADDRESS OF REMAINDER
LD HL,(HDEPTR) ;HL = BASE ADDRESS OF REMAINDER
RET

; DATA
DVEND: DS 2 ; ADDRESS OF DIVIDEND
DVSOR: DS 2 ; ADDRESS OF DIVISOR
HDEPTR: DS 2 ; ADDRESS OF CURRENT HIGH DIVIDEND ARRAY
ODEPTR: DS 2 ;ADDRESS OF OTHER HIGH DIVIDEND ARRAY
COUNT: DS 2 ;TEMPORARY FOR LOOP COUNTER
SUBCNT: DS 1 ;SUBTRACT LOOP COUNT
HIDE1 : DS 255 ;HIGH DIVIDEND BUFFER 1
HIDE2: DS 255 ;HIGH DIVIDEND BUFFER 2

SAMPLE EXECUTION:

SC6G:
LD
LD
LD
CALL

HL,AY1
DE,AY2
B,SZAYS
MPBDIV

;HL = BASE ADDRESS OF DIVIDEND
;DE = BASE ADDRESS OF DIVISOR
;B = LENGTH OF ARRAYS IN BYTES
;MULTIPLE-PRECISION BINARY DIVIDE
;RESULT OF 14B60404H / 1234H = 12345H

IN MEMORY AYl = 45H
AY1+1 23H
AY1+2 = 01H

244 ARITHMETIC

AY1+3 = OOH
AY1+4 = OOH
AY1+5 OOH
AY1+6 OOH

JR SC6G

SZAYS EQlI 7 ;LENOTH OF ARRAYS IN BYTES
AY1:

DB 004H
DB 004H
DB OB6H
DB 014H
DB 0
DB 0
DB 0

AY2:
DB 034H
DB O12H
DB 0
DB 0
DB 0
DB 0
DB 0

END

Multiple-Precision Binary Comparison

(MPBCMP) 6H

Compares two multi-byte unsigned binary
numbers and sets the Carry and Zero flags
appropriately. The Zero flag is set to 1 if the
operands are equal and to 0 if they are not equal.
The Carry flag is set to 1 if the subtrahend is
larger than the minuend; the Carry flag is
cleared otherwise. Thus, the flags are set as ifthe
subtrahend had been subtracted from the
minuend.

Procedure: The program compares the oper
ands one byte at a time, starting with the most
significant bytes and continuing until it finds
corresponding bytes that are not equal. Ifall the
bytes are equal, it exits with the Zero flag set to
1. Note that the comparison works through the
operands starting with the most significant
bytes, whereas the subtraction (Subroutine 6E)
starts with the least significant bytes.

Entry Conditions

Base address of minuend in HL
Base address of subtrahend in DE
Length of the operands in bytes in B

Examples

Registers Used: Af~ BC, DE, HL

Execution Time: 44 cycles per byte that must be
examined plus approximately 60 cycles overhead.
That is, the program continues until it finds cor
responding bytes that are not the same; each pair of
bytes it must examine requires 44 cycles.

Examples:

I. Comparing two 6-byte numbers that are equal:
44 * 6 t 60 = 324 cycles

2. Comparing two 8-byte numbers that differ in
the next to most significant bytes:

44 * 2 + 60 = 148 cycles

Program Size: 19 bytes

Data Memory Required: None

Special Case: A length of 0 causes an immediate
exit with the Carry flag cleared and the Zero flag set
to I.

Exit Conditions

Flags set as if subtrahend had been subtracted
from minuend.

Zero flag = 1 if subtrahend and minuend are
equal,O if they are not equal.

Carry flag = 1 if subtrahend is larger than
minuend in the unsigned sense, 0 if it is less
than or equal to the minuend.

I. Data:

Result:

Length of operands (in bytes) = 6
Subtrahend = 19D028AI93EA I6
Minuend = 4E67BCI5A266 16

Zero flag = 0 (operands are not equal)
Carry flag = 0 (subtrahend is not larger than

minuend)

3. Data: Length of operands (in bytes) = 6
Subtrahend = 19D028AI93EA I6
Minuend = OF37E5991D7C I6

Result: Zero flag = 0 (operands are not equal)
Carry flag = I (subtrahend is larger than

minuend)

245

246 ARITHMETIC

2. Data: Length of operands (in bytes) = 6
Subtrahend = 19D028Al93EA l6
Minuend = 19D028A 193EAl6

Result: Zero flag = I (operands are equal)
Carry flag = 0 (subtrahend is not larger than

minuend)

Title
Name:

PUl"pose:

Entry:

Exit:

Multiple-Precision Binary Comparison
MPBCMP

Compare 2 arrays of binary bytes and return
the Carry and Zero flags set or cleared

Register pair HL = Base address of minuend
Register pair DE = Base address of subtrahend
Register B = Length of operands in bytes

The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAY[O] is the
least significant byte, and ARRAY[LENGTH-1J
the most significant byte.

IF minuend = subtrahend THEN
C=0,Z=1

IF minuend > subtrahend THEN
C=O,Z=O

IF minuend < subtrahend THEN
C=l,Z=O

Registers used: AF,BC,DE,HL

MPBCMP:

Time:

Size:

; TEST
LD
OR
RET
LD

LENGTH
A,B
A
Z
C,B

44 cycles per byte that must be examined plus
60 cycles overhead

Program 19 bytes

OF OPERANDS, SET POINTERS TO MSB~S

IS LENGTH OF ARRAYS = O?
YES, EXIT WITH C=O, Z=l
BC = LENGTH

LD B,O
ADD HL,BC
EX DE,HL
ADD HL,BC
LD B,C
OR A
;SUBTRACT BYTES,
;EXIT WITH FLAGS

LOOP:
DEC
DEC
LD
SBC
RET

DJNZ
RET

HL
DE
A, (DE)
A, (HL)
NZ

LOOP

6H MULTIPLE-PRECISION BINARY COMPARISON (MPBCMP) 247

;DE POINTS TO END OF MINUEND
;HL POINTS TO END OF SUBTRAHEND
;B = LENGTH
;CLEAR CARRY INITIALLY

STARTING WITH MOST SIGNIFICANT
SET IF CORRESPONDING BYTES NOT EQUAL

;BACK UP TO LESS SIGNIFICANT BYTE

;GET NEXT BYTE OF MINUEND
;SUBTRACT BYTE OF SUBTRAHEND
;RETURN IF NOT EQUAL WITH FLAGS
; SET
;CONTINUE UNTIL ALL BYTES COMPARED
; EQUAL, RETURN WITH C=O, Z=l

SAMPLE EXECUTION:

SC6H:
LD HL,AYl iHL = BASE ADDRESS OF MINUEND
LD DE,AY2 ;DE = BASE ADDRESS OF SUBTRAHEND
LD B,SZAYS ;B = LENGTH OF OPERANDS IN BYTES
CALL MPBCMP ;MULTIPLE-PRECISION BINARY COMPARISON

iRESULT OF COMPARE(7654321H,1234567H) IS
; C=O,Z=O

JR SC6H

SZAYS EQU 7 ;LENGTH OF OPERANDS IN BYTES
AY1:

DB 021H
DB 043H
DB 065H
DB 007H
DB 0
DB 0
DB 0

AY2:
DB 067H
DB 045H
DB 023H
DB 00lH
DB 0
DB 0
DB 0

END

Multiple-Precision Decimal Addition
(MPDADD) 61

Adds two multi-byte unsigned decimal num
bers. Both numbers are stored with their least
significant digits at the lowest address. The sum
replaces the addend. The length of the numbers
(in bytes) is 255 or less.

Procedure: The program first clears the Carry
flag and then adds the operands one byte (two
digits) at a time, starting with the least significant
digits. The sum replaces the addend. A length of
00 causes an immediate exit with no addition.
The final Carry flag reflects the addition of the
most significant digits.

Entry Conditions

Base address of addend in HL
Base address of adder in DE
Length of the operands in bytes in register B

Example

1. Data: Length of operands (in bytes) = 6
Addend 196028819315 16
Adder = 293471605987 16

Result: Addend 489500425302 16
Carry = 0

Registers Used: AF, B, DE, HL

Execution Time: 50 cycles per byte plus 18 cycles
overhead

Program Size: 12 bytes

Data Memory Required: None

Special Case: A length of 0 causes an immediate
exit with the addend unchanged and the Carry flag
cleared.

Exit Conditions

Addend replaced by addend plus adder

248

Title
Name:

Multiple-Precision Decimal Addition
MPDADD

Purpose:

Entry:

Exit:

61 MULTIPLE-PRECISION DECIMAL ADDITION (MPDADD) 249

Add 2 arrays of BCD bytes
Array1 = Array1 + Array2

Register pair HL = Base address of array 1
Register pair DE = Base address of array 2
Register B = Length of arrays in bytes

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAYCO] is the
least significant byte, and ARRAYCLENGTH-1]
the most significant byte.

Array1 := Array1 + Array2

Registers used: A,B,DE,F,HL

;TEST ARRAY LENGTH FOR ZERO, CLEAR CARRY
LD A,B
OR A ;TEST LENGTH AND CLEAR CARRY
RET Z ;EXIT IF LENGTH IS 0
;ADD OPERANDS 2 DIGITS AT A TIME

NOTE CARRY IS 0 INITIALLY

MPDADD:

LOOP:

Time:

Size:

LD
ADC
DAA
LD
INC
INC
DJNZ
RET

A, (DE)
A, (HL)

(HL),A
HL
DE
LOOP

50 cycles per byte plus 18 cycles overhead

Program 12 bytes

;ADD NEXT BYTES
'; CHANGE TO DEC I MAL
;STORE SUM
; INCREMENT TO NEXT BYTE

;CONTINUE UNTIL ALL BYTES SUMMED

SAMPLE EXECUTION:

SC6I:
LD
LD
LD
CALL

HL,AY1
DE,AY2
B,SZAYS
MPDADD

;HL = BASE ADDRESS OF ARRAY 1
;DE = BASE ADDRESS OF ARRAY 2
;B = LENGTH OF ARRAYS IN BYTES
;MULTIPLE-PRECISION BCD ADDITION
;RESULT OF 1234567 + 1234567 = 2469134

IN MEMORY AY1 34H
AY1+1 91H
AY1+2 46H

250 ARITHMETIC

AY1+3 02H
AY1+4 OOH
AY1+5 = OOH
AY1+6 OOH

JR SC6I

SZAYS EQU 7 ;LENGTH OF ARRAYS IN BYTES
AYl :

DB 067H
DB 045H
DB 023H
DB 00lH
DB 0
DB 0
DB 0

AY2:
DB 067H
DB 045H
DB 023H
DB 00lH
DB 0
DB 0
DB 0

END

Multiple-Precision Decimal Subtraction
(MPDSUB) 6J

Subtracts two multi-byte unsigned decimal
numbers. Both numbers are stored with their
least significant digits at the lowest address. The
difference replaces the minuend. The length of
the numbers (in bytes) is 255 or less.

Procedure: The program first clears the Carry
flag and then subtracts the subtrahend from the
minuend one byte (two digits) at a time, starting
with the least significant digits. A length of 0
causes an immediate exit with no subtraction.
The final Carry flag reflects the subtraction of
the most significant digits.

Entry Conditions

Base address of minuend in HL
Base address of subtrahend in DE
Length of the operands in bytes in B

Example

Data: Length of operands (in bytes) = 6
Minuend = 293471605987 16
Subtrahend 1960288193151 16

Result: Minuend = 097442786672 16
Carry = 0, since no borrow is necessary

Registers Used: A, B, DE, F; H L

Execution Time: 50 cycles per byte plus 22 cycles
overhead

Program Size: 13 bytes

Data Memory Required: None

Special Case: A length of 0 causes an immediate
exit with the minuend unchanged (that is, the
difference is equal to the minuend). The Carry flag is
cleared.

Exit Conditions

Minuend replaced by minuend minus subtrahend

Title
Name:

Multiple-Precision Decimal Subtraction
MPDSUB

251

252 ARITHMETIC

Purpose:

Entry:

Exit:

Subtract 2 arrays of BCD bytes
Minuend = minuend - subtrahend

Register pair HL = Base address of minuend
Register pair DE = Base address of subtrahend
Register B = Length of arrays in bytes

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAY[Ol is the
least significant byte, and ARRAY[LENGTH-1J
the most significant byte.

Minuend := minuend - subtrahend

Registers used: A,B,DE,F,HL

;TEST ARRAY LENGTH FOR ZERO, CLEAR CARRY
LD A,B
OR A ;TEST ARRAY LENGTH, CLEAR CARRY
RET Z ;EXIT IF LENGTH IS 0
EX DE,HL ;HL = SUBTRAHEND

;DE = MINUEND
;SUBTRACT OPERANDS 2 DIGITS AT A TIME
; NOTE CARRY IS INITIALLY 0

MPDSUB:

LOOP:

Time:

Size:

LD
SBC
DAA
LD
INC
INC
DJNZ
RET

A, (DE)
A, (HL)

(DE) , A
HL
DE
LOOP

50 cycles per byte plus 22 cycles overhead

Program 13 bytes

;GET BYTE OF MINUEND
;SUBTRACT BYTE OF SUBTRAHEND
;CHANGE TO DECIMAL
;STORE BYTE OF DIFFERENCE
; INCREMENT TO NEXT BYTE

;CONTINUE UNTIL ALL BYTES SUBTRACTED

SAMPLE EXECUTION:

SC6J:
LD
LD
LD
CALL

HL,AY1
DE,AY2
B,SZAYS
MPDSUB

;HL = BASE ADDRESS OF MINUEND
;DE = BASE ADDRESS OF SUBTRAHEND
;B = LENGTH OF ARRAYS IN BYTES
;MULTIPLE-PRECISION BCD SUBTRACTION
;RESULT OF 2469134 - 1234567 = 1234567

IN MEMORY AY1 = 67H
AY1+1 = 45H

6J MULTIPLE-PRECISION DECIMAL SUBTRACTION (MPDSUB) 253

.JR

SZAYS EQU
AY1:

DB
DB
DB
DB
DB
DB
DB

AY2:
DB
DB
DB
DB
DB
DB
DB

END

AY1+2
AYl+3
AYl+4
AY1+5
AY1+6

SC6....

7 ;LENGTH OF ARRAYS IN BYTES

034H
091H
046H
002H
o
o
o

067H
045H
023H
00lH
o
o
o

2:3H
= 01H

OOH
OOH
OOH

Multiple·Precision Decimal
(MPDMUL)

ultiplication
6K

Multiplies two multi-byte unsigned decimal
numbers. Both numbers are stored with their
least significant digits at the lowest address. The
product replaces the multiplicand. The length of
the numbers (in bytes) is 255 or less. Only the
least significant bytes of the product are returned
to retain compatibility with other multiple
precision decimal operations.

Procedure: The program handles each digit of
the multiplicand separately. It masks the digit
off, shifts it (if it is the upper nibble of a byte),
and then uses it as a counter to determine how
many times to add the multiplier to the partial
product. The least significant digit of the partial
product is saved as the next digit of the full
product and the partial product is shifted right
four bits. The program uses a flag to determine
whether it is currently working with the upper or
lower digit of a byte. A length of 00 causes an
exit with no multiplication.

Entry Conditions

Base address of multiplicand in HL
Base address of multiplier in DE
Length of the operands in bytes in B

Example

I. Data: Length of operands (in bytes) 04
Multiplier = 00003518 16
Multiplicand = 00006294 16

Result: Multiplicand 22142292 16

254

Registers Used: AF, BC, DE, HL

Execution Time: Depends on the length of the
operands and on the size of the digits in the
multiplicand (since those digits determine how many
times the multiplier must be added to the partial
product). If the average digit in the multiplicand has
a value of 5, then the execution time is approximately
694 * LENGTH? + 1555 * LENGTH + 272 cycles
where LENGTH is the number of bytes in the
operands.

Program Size: 167 bytes

Data Memory Required: 520 bytes anywhere in
RAM. This is temporary storage forthe high bytes of
the partial product (255 bytes starting at address
PROD), the multiplicand (255 bytes starting at
address MCAND), the length of the arrays (I byte at
address LEN), a digit counter indicating upper or
lower digit (I byte at address DCNT), a loop counter
(I byte at address LPCNT), an overflow byte (I byte
at address OVRFLW), pointers to the multiplicand
and multiplier (2 bytes each starting at addresses
MCADR and MPADR, respectively), and the next
byte of the multiplicand (I byte at address NBYTE).

Special Case: A length of 0 causes an immediate
exit with the multiplicand unchanged. The more
significant bytes of the product (starting at address
PROD) are undefined.

Exit Conditions

Multiplicand replaced by multiplicand times
multiplier

Note that MPDMUL returns only the less sig
nificant bytes of the product (that is, the number
of bytes in the multiplicand and multiplier) to

6K MULTIPLE-PRECISION DECIMAL MULTIPLICATION (MPDMUL) 255

maintain compatibility with other multiple
precIsIOn decimal arithmetic operations. The
more significant bytes of the product are avail
able starting with their least significant digits at

address PROD. The user may need to check
those bytes for a possible overflow or extend the
operands with zeros.

Title
Name:

Purpose:

Entry:

Exit:

Multiple-Precision Decimal ~ultiplication

MPDMUL

Multiply 2 arrays of BCD bytes
Multiplicand = multiplicand * multiplier

Register pair HL = Multiplicand base address
Register pair DE = Multiplier base address
Register B = Length of arrays in bytes

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAV[OJ is the
least significant byte, and ARRAY[LENGTH-1J
the most significant byte.

Multiplicand := multiplicand * multiplier

Registers used: AF,BC,DE,HL

Time:

Size:

,
Assuming the average digit valu~ of multiplicand;
is 5, the time is approximately ;

(694 * length A 2) + (1555 * length) + 272 cycles;

Program 167 bytes
Data 520 bytes

;EXIT IF LENGTH IS 0
;SAVE LENGTH
;LOOP COUNTER = LENGTH IN BYTES
;SAVE MULTIPLICAND ADDRESS
;SAVE MULTIPLIER ADDRESS

MPDMUL:
; INITIALIZE COUNTERS AND POINTERS
LD A,B ;TEST LENGTH OF OPERANDS
OR A
RET Z
LD (LEN), A
LD (LPCNT),A
LD (MCADR),HL
LD (MPADR),DE

256 ARITHMETIC

;SAVE MULTIPLICAND IN TEMPORARY BUFFER (MCAND)
LD DErMCAND ;DE POINTS TO TEMPORARY MULTIPLICAND
LD (NBYTE)rDE

;HL POINTS TO MULTIPLICAND
LD CrB ;BC = LENGTH
LD BrO
LDIR ;MOVE MULTIPLICAND TO BUFFER
;CLEAR PARTIAL PRODUCT r CONSISTING OF UPPER BYTES

STARTING AT PROD AND LOWER BYTES REPLACING
, MULTIPLICAND
LD HLr(MCADR)
LD A, (LEN)
CALL ZEROBUF ;ZERO MULTIPLICAND

;ZERO PRODUCT
LD HL,PROD
CALL ZEROBUF ;ZERO PRODUCT ARRAY

,
;LOOP THROUGH ALL BYTES OF MULTIPLICAND

;LOOP THROUGH 2 DIGITS PER BYTE
; DURING LOWER DIGIT DCNT = 1
; DURING UPPER DIGIT DCNT = 0

LOOP:

DLOOP:

DLOOPl :

LD
LD

SUB
LD
LD
OR
LD
LD
..JR
RRCA
RRCA
RRCA
RRCA

AND
JR
LD

Ar l
(DCNT),A

A
(OVRFLW),A
A, (DCNT)
A
HLr(NBYTE)
A, (HL)
NZ,DLOOPl

OFH
ZrSDIGIT
CrA

;START WITH LOWER DIGIT

;A = 0
;CLEAR OVERFLOW BYTE

;TEST FOR LOWER DIGIT (Z=O)
;GET NEXT BYTE

;JUMP IF LOWER DIGIT
;SHIFT UPPER DIGIT RIGHT 4 BITS

;KEEP ONLY CURRENT DIGIT
;BRANCH IF DIGIT IS ZERO
;C = DIGIT

;ADD MULTIPLIER TO PRODUCT NDIGIT TIMES
ADDLP:

LD HLr(MPADR) ;HL = MULTIPLIER ADDRESS
LD DErPROD ;DE = PRODUCT ADDRESS
LD Ar(LEN)
LD B,A ;B = LENGTH
OR A ;CLEAR CARRY INITIALLY

INNER:
LD Ar (DE) ;GET NEXT BYTE OF PRODUCT
ADC Ar(HL) ;ADD NEXT BYTE OF MULTIPLIER

6K MULTIPLE-PRECISION DECIMAL MULTIPLICATION (MPDMUL) 257

DAA
LD (DE), A
INC HL
INC DE
D.....NZ INNER
.....R NC,DECND
LD HL,OVRFLW
INC (HL)

DECND:
DEC C
.....R NZ,ADDLP

;DECIMAL AD.....UST
;STORE SUM IN PRODUCT

;CONTINUE UNTIL ALL BYTES ADDED
;JUMP IF NO OVERFLOW FROM ADDITION
;ELSE INCREMENT OVERFLOW BYTE

;CONTINUE UNTIL DIGIT 0

;STORE LEAST SIGNIFICANT DIGIT OF PRODUCT
; AS NEXT DIGIT OF MULTIPLICAND

SDIGIT:

SD1:

SHFTLP:

LD
AND
LD
LD
OR
LD
.....R
RRCA
RRCA
RRCA
RRCA

LD
OR
LD

;SHIFT
LD
LD
LD
LD
LD
ADD
LD

DEC
RRD
D•.JNZ

A, (PROD)
OFH
B,A
A, (DCNT)
A
A,B
NZ,SDl

HL,(MCADR)
(HL)
(HL), A

PRODUCT RIGHT
A, (LEN)
B,A
E,A
D,O
HL,PROD
HL,DE
A, (OVRFLW)

HL

SHFTLP

;GET LOW BYTE OF PRODUCT

;SAVE IN B

;TEST FOR LOWER DIGIT (Z=O)
;A = NEXT DIGIT
;JUMP IF WORKING ON LOWER· DIGIT
;ELSE MOVE DIGIT TO HIGH BITS

;PLACE NEXT DIGIT IN MULTIPLICAND

1 DIGIT (4 BITS)

;B = LENGTH

;HL POINTS BEYOND END OF PROD
;A = OVERFLOW BYTE

; DECREMENT, POINT TO NEXT BYTE
;ROTATE BYTE OF PRODUCT RIGHT 1 DIGIT
;CONTINUE UNTIL DONE

;CHECK IF DONE WITH BOTH DIGITS OF THIS BYTE
LD HL,DCNT ;ARE WE ON LOWER DIGIT?
DEC (HL)
JR Z,DLOOP ;YES, DO UPPER DIGIT OF SAME BYTE

; INCREMENT TO NEXT BYTE AND SEE IF DONE
LD HL,(NBYTE) ;INCREMENT TO NEXT MULTIPLICAND BYTE
INC HL
LD (NBYTE),HL

258 ARITHMETIC

LD
INC
LD
LD
DEC
JR

EXIT:
RET

HL,(MCADR)
HL
(MCADR),HL
HL,LPCNT
(HL)
NZ,LOOP

; INCREMENT TO NEXT RESULT BYTE

;DECREMENT LOOP COUNTER

--,
; ROUTINE: ZEROBUF
; PURPOSE: ZERO A BUFFER
; ENTRY: HL POINTS TO FIRST BYTE OF BUFFER
; LEN = LENGTH OF BUFFER
;EXIT: BUFFER ZEROED
;REGISTERS USED: AF,BC,DE,HL
a _,

ZEROBUF:
LD
LD
DEC
RET
LD
LD
INC
LD
LD
LDIR
RET

LEN:
DCNT:
LPCNT:
OVRFLW:
MCADR:
MPADR:
NBYTE:
PROD:
MCAND:

; DATA
DS
DS
DS
DS
DS
DS
DS
DS
DS

(HL),O
A, (LEN)
A
Z
D,H
E,L
DE
C,A
B,O

1
1
1
1
2
2
2
255
255

;ZERO FIRST BYTE

;RETURN IF ONLY ONE BYTE

;DE = SECOND BYTE
;BC = LENGTH OF ARRAY

;CLEAR REST OF BUFFER BY
; PROPAGATING ZEROS FROM ONE
; BYTE TO THE NEXT

;LENGTH OF ARRAYS
;DIGIT COUNTER FOR BYTES
;LOOP COUNTER
;OVERFLOW BYTE
;NEXT BYTE TO STORE INTO
;ADDRESS OF MULTIPLIER
;NEXT DIGIT OF MULTIPLICAND
;PRODUCT BUFFER
;MULTIPLICAND BUFFER

SAMPLE EXECUTION:

SC6K:
LD
LD
LD
CALL

HL,AY1
DE,AY2
B,SZAYS
MPDMUL

;BASE ADDRESS OF MULTIPLICAND
;BASE ADDRESS OF MULTIPLIER
;LENGTH OF ARRAYS IN BYTES
;MULTIPLE-PRECISION BCD MULTIPLICATION
;RESULT OF 1234 * 1234 = 1522756

6K MULTIPLE-PRECISION DECIMAL MULTIPLICATION (MPDMUL) 259

..JR

SZAYS EQU
AYl :

DB
DB
DB
DB
DB
DB
DB

AY2:
DB
DB
DB
DB
DB
DB
DB

END

IN MEMORY AYl
AY1+1
AY1+2
AY1+3
AY1+4
AY1+5
AY1+6

SC6K

7 ;LENGTH OF ARRAYS IN BYTES

034H
012H
o
o
o
o
o

034H
012H
o
o
o
o
o

= 56H
= 27H

52H
01H
OOH
OOH
OOH

Multiple-Precision Decimal Division
(MPDDIV) 6L

Divides two multi-byte unsigned decimal
numbers. Both numbers are stored with their
least significant digits at the lowest address. The
quotient replaces the dividend; the remainder is
not returned, but its base address is in memory
locations HDEPTR and HDEPTR+ 1. The
length of the numbers (in bytes) is 255 or less.
The Carry flag is cleared if no errors occur; if a
divide by 0 is attempted, the Carry flag is set to
1, the dividend is unchanged, and the remainder
is set to O.

Registers Used: AF, BC, DE, HL

Execution,Time: Depends on the length of the
operands and on the size of the digits in the
quotient (determining how many times the divisor
must be subtractea from the dividend). If the
average digit in the quotient has a value of 5, the
execution time is approximately 1054'" LENGTH2 +
2297 *LENGTH +390 cycles where LENGTH is the
number of bytes in the operands.

Program Size: 168 bytes

Data Memory Required: 523 bytes anywhere in
RAM. This is storage for the high dividend (255
bytes starting at address H IDE I), the result of the
subtraction (255 bytes starting at address HIDE2),
the length of the operands (I byte at address

Entry Conditions

Base address of dividend in HL
Base address of divisor in DE
Length of the operands in bytes in B

260

Procedure: The program divides by determin
ing how many times the divisor can be subtracted
from the dividend. It saves that number in the
quotient, makes the remainder into the new
dividend, and rotates the dividend and the
quotient left one digit. The program exits
immediately, setting the Carry flag, if it finds
the divisor to be O. The Carry flag is cleared
otherwise.

LENGTH), the next digit in the array (I byte at
address NDIGIT), the counter for the subtraction
loop (I byte at address CNT), pointers to the
dividend, divisor, current high dividend and remain
der, and other high dividend (2 bytes each starting at
addresses DVADR, DSADR, HDEPTR, and
ODEPTR, respectively), and the divide loop counter
(2 bytes starting at address COUNT).

Special Cases:

I. A length of0 causes an immediate exit with the
Carry flag cleared, the quotient equal to the original
dividend, and the remainder undefined.

2. A divisor of 0 causes an exit with the Carry flag
set to I, the quotient equal to the original dividend,
and the remainder equal to O.

Exit Conditions

Dividend replaced by dividend divided by divisor
If the divisor is non-zero, Carry 0 and the

result is normal.
If the divisor is 0, Carry 1, the dividend is

unchanged, and the remainder is O.
The base address of the remainder (i.e., the

address of its least significant digits) is in
HDEPTR and HDEPTR+ 1.

6L MULTIFlE-PRECISION DECIMAL DIVISION (MPDDIV) 261

Example

I. Data: Length of operands (in bytes) = 04
Dividend = 22142298 16
Divisor = 00006294 16

Result: Dividend = 00003518 16
Remainder (base address in HDEPTR and
HDEPTR + 1) = 00000006 16
Carry flag is 0 to indicate no divide-by-O error.

Title
Name:

Purpose:

Entry:

Exit:

Multiple-Precision Decimal Division
MPDDIV

Divide 2 arrays of BCD bytes
Quotient := dividend / divisor

Register pair HL = Base address of dividend
Register pair DE = Base address of divisor
Register B = Length of operands in bytes

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAY[OJ is the
least significant byte, and ARRAY[LENGTH-1J
the most significant byte.

Dividend := dividend / divisor
Remainder := base address in HDEPTR
If no errors then

carry := 0
ELSE

divide-by-O e~ror

carry : = 1
dividend unchanged
remainder := 0

Registers used: AF,BC,DE,HL

Time:

Size:

Assuming the average digit value in the
quotient is 5 then the time is approximately ;
(1054 * length A 2) + (2297 * length) + 390 cycles;

Program 168 bytes
Data 523 bytes

262 ARITHMETIC

MPDDIV:
; SAVE
LD
LD
LD
LD
OR
JP

PARAMETERS AND
(DVADR),HL
(DSADR),DE
A,B
(LENGTH),A
A
Z,OKEXIT

CHECK FOR ZERO LENGTH
;SAVE DIVIDEND ADDRESS
;SAVE DIVISOR ADDRESS

;SAVE LENGTH
;TEST LENGTH
;EXIT IF LENGTH 0

,ZERO
, AND
LD
LD
LD
LD
SUB

BOTH DIVIDEND BUFFERS
SET UP THE DIVIDEND POINTERS

HL,HIDEl ~HL = ADDRESS OF HIGH DIVIDEND 1
(HDEPTR),HL ;HIGH DIVIDEND PTR = HIDEl
DE,HIDE2 ;DE = ADDRESS OF HIGH DIVIDEND 2
(ODEPTR),DE ,OTHER DIVIDEND PTR = HIDE2
A ;GET 0 TO USE IN FILLING BUFFERS

;B = LENGTH IN BYTES
;FILL BOTH DIVIDEND BUFFERS WITH ZEROS

INITLP:
LD
LD
INC
INC
D..JNZ

(HL),A
(DE),A
HL
DE
INITLP

;ZERO BYTE OF HIDEl
;ZERO BYTE OF HIDE2

;SET COUNT TO NUMBER
; COUNT := (LENGTH *
LD A, (LENGTH)
LD L,A
LD H,O
ADD HL,HL
INC HL
LD (COUNT),HL

OF DIGITS PLUS 1
2) + 1;

;EXTEND LENGTH TO 16 BITS

;LENGTH * 2
;LENGTH * 2 + 1
;COUNT = LENGTH * 2 + 1

;CHECK FOR DIVIDE BY ZERO
; LOGICALLY OR ENTIRE DIVISOR TO SEE IF ALL BYTES ARE 0
LD HL,(DSADR) ;HL = ADDRESS OF DIVISOR
LD A, (LENGTH)
LD B, A ; B = LENGTH IN BYTES
SUB A ;START LOGICAL OR WITH 0

DVOl :
OR (HL) ;OR NEXT BYTE OF DIVISOR
INC HL
DJNZ DVOl
OR A ;TEST FOR ZERO DIVISOR
...'R Z,EREXIT ;ERROR EXIT IF DIVISOR IS 0

SUB A
LD (NDIGIT),A ; START NEXT DIGIT AT 0

DIVIDE BY DETERMINING HOW MANY TIMES DIVISOR CAN
BE SUBTRACTED FROM DIVIDEND FOR EACH DIGIT
POSITION

DVLOOP:

6L MULTIPLE-PRECISION DECIMAL DIVISION (MPDDIV) 263

;ROTATE LEFT LOWER DIVIDEND AND QUOTIENT:
; HIGH DIGIT OF NDIGIT BECOMES LEAST SIGNIFICANT DIGIT
; OF QUOTIENT (DIVIDEND ARRAY) AND MOST SIGNIFICANT DIGIT
; OF DIVIDEND ARRAY GOES TO HIGH DIGIT OF NDIGIT
LD HL,(DVADR)
CALL RLARY ;ROTATE LOW DIVIDEND

;IF DIGIT COUNT = 0 THEN WE ARE DONE
LD HL,(COUNT) ;DECREMENT COUNT BY 1
DEC HL
LD (COUNT),HL
LD A,H ;TEST 16-BIT COUNT FOR 0
OR L
JR Z,OKEXIT ;EXIT WHEN COUNT = 0

,
;ROTATE LEFT HIGH DIVIDEND, LEAST SIGNIFICANT DIGIT
; OF HIGH DIVIDEND BECOMES HIGH DIGIT OF NDIGIT
LD HL,(HDEPTR)

CALL RLARY ;ROTATE HIGH DIVIDEND

,
;SEE HOW MANY TIMES DIVISOR GOES INTO HIGH DIVIDEND
; ON EXIT FROM THIS LOOP, HIGH DIGIT OF NDIGIT IS NEXT
; QUOTIENT DIGIT AND HIGH DIVIDEND IS REMAINDER
SUB A ;CLEAR NUMBER OF TIMES INITIALLY
LD (NDIGIT),A

SUBLP:

INNER:

LD
LD
LD
LD
LD
OR

LD
SBC
DAA
LD
INC
INC
INC
LD
DEC
LD
....R
JR

HL,(DSADR)
DE, (HDEPTR)
BC,(ODEPTR)
A, (LENGTH)
(CNT),A
A

A, (DE)
A, (HL)

(BC),A
HL
DE
BC
A, (CNT)
A
(CNT),A
NZ,INNER
C,DVLOOP

;HL POINTS TO DIVISOR
;DE POINTS TO CURRENT HIGH DIVIDEND
;BC POINTS TO OTHER HIGH DIVIDEND

;LOOP COUNTER = LENGTH
;CLEAR CARRY INITIALLY

:GET NEXT BYTE OF DIVIDEND
;SUBTRACT DIVISOR
:CHANGE TO DECIMAL
;STORE DIFFERENCE IN OTHER DIVIDEND
; INCREMENT TO NEXT BYTE

;DECREMENT COUNTER

;CONTINUE THROUGH ALL BYTES
;UMP WHEN BORROW OCCURS
;NDIGIT IS NUMBER OF TIMES DIVISOR
; GOES INTO ORIGINAL HIGH DIVIDEND
;HIGH DIVIDEND CONTAINS REMAINDER

264 ARITHMETIC

;DIFFERENCE IS NOT NEGATIVE, SO ADD 1 TO
NUMBER OF SUCCESSFUL SUBTRACTIONS

, (LOW DIGIT OF NDIGIT)
LD HL,NDIGIT ;NDIGIT = NDIGIT + 1
INC (HL)

;EXCHANGE POINTERS, THUS MAKING DIFFERENCE NEW DIVIDEND
LD HL,(HDEPTR)
LD DE, (ODEPTR)
LD (HDEPTR),DE
LD (ODEPTR),HL
JR SUBLP ;CONTINUE UNTIL DIFFERENCE NEGATIVE

;NO ERRORS, CLEAR CARRY

;DIVIDE-BY-ZERO ERROR, SET CARRY

OKEXIT:

EREXIT:

OR
RET

SCF
RET

A ;CLEAR CARRY, VALID RESULT

;SET CARRY, INVALID RESULT

RLARY:

;***********************************
; SUBROUTINE: RLARY
; PURPOSE: ROTATE LEFT AN ARRAY ONE DIGIT (4 BITS)
;ENTRY: HL = BASE ADDRESS OF ARRAY
; LOW DIGIT OF NDIGIT IS DIGIT TO ROTATE THROUGH
;EXIT: ARRAY ROTATED LEFT THROUGH LOW DIGIT OF NDIGIT
;REGISTERS USED: AF, BC, DE, HL
;**********************************

;SHIFT NDIGIT INTO LOW DIGIT OF ARRAY AND
; SHIFT ARRAY LEFT
LD A, (LENGTH)
LD B,A ;B LENGTH OF ARRAY IN BYTES
LD A, (NDIGIT) ;A = NDIGIT

SHIFT:
RLD
INC HL
D.JNZ SHIFT
LD (NDIGIT),A
RET

; DATA
LENGTH: DS 1
NDIGIT: DS 1
CNT: DS 1
DVADR: DS 2
DSADR: DS 2
HDEPTR: DS 2
ODEPTR: DS 2

;SHIFT BYTE LEFT 1 DIGIT (4 BITS)

;CONTINUE UNTIL ALL BYTES SHIFTED
;SAVE NEW NEXT DIGIT

;LENGTH OF ARRAYS IN BYTES
;NEXT DIGIT IN ARRAY
;COUNTER FOR SUBTRACT LOOP
;DIVIDEND ADDRESS
;DIVISOR ADDRESS
;HIGH DIVIDEND POINTER
;OTHER DIVIDEND POINTER

COUNT: DS
HIDE1: DS
HIDE2: DS

2
255
255

6L MULTIPLE-PRECISION DECIMAL DIVISION (fVlPDDIV) 265

;DIVIDE LOOP COUNTER
;HIGH DIVIDEND BUFFER 1
;HIGH DIVIDEND BUFFER 2

SAMPLE EXECUTION:

SC6L:
LD
LD
LD
CALL

HL,AYl
DE,AY2
B,SZAYS
MPDDIV

;BASE ADDRESS OF DIVIDEND
;BASE ADDRESS OF DIVISOR
;LENGTH OF ARRAYS IN BYTES
;MULTIPLE-PRECISION BCD DIVISION
;RESULT OF 1522756 I 1234 = 1234

IN MEMORY AYl 34H
AY1+1 12H
AY1+2 OOH
AY1+3 OOH
AY1+4 OOH
AY1+5 (lOH
AY1+6 OOH

JR SC6L

SZAYS EQU 7 ; LENGTH OF ARRAYS IN BYTES

AYI :
DB 056H
DB 027H
DB 052H
DB 01H
DB (l

DB 0
DB 0

AY2:
DB 034H
DB 012H
DB 0
DB 0
DB 0
DB 0
DB 0

END

Multiple-Precision Decimal Comparison 6M

Compares two multi-byte unsigned decimal
(BCD) numbers and sets the Carry and Zero
flags appropriately. The Zero flag is set to I ifthe
operands are equal and to 0 ifthey are not equal.
The Carry flag is set to 1 if the subtrahend is
larger than the minuend; the Carry flag is
cleared otherwise. Thus the flags are set as if the

Examples

subtrahend had been subtracted from the
minuend.

Note: This program is exactly the same as
Subroutine 6H, the multiple-precision binary
comparison, since the form of the operands does
not matter if they are only being compared. See
Subroutine 6H for a listing and other details.

I. Data: Length of operands (in bytes) = 6 3. Data:
Subtrahend = 19652871934016
Minuend = 456780153266 16

Result: Zero flag =°(operands are not equal) Result:
Carry flag =°(subtrahend is not larger than

minuend)

2. Data: Length of operands (in bytes) 6
Subtrahend = 19652871934°16
Minuend = 19652871934°16

Result: Zero flag I (operands are equal)
Carry flag =°(subtrahend is not larger than

minuend)

266

Length of operands (in bytes) = 6
Subtrahend = 19652871934° 16
Minuend = 073785991074 16
Zero flag =°(operands are not equal)
Carry flag = I (subtrahend is larger than

minuend)

Bit Field Extraction (BFE)

Extracts a field of bits from a byte and
returns the field in the least significant bit posi
tions. The width of the field and its lowest bit
position are parameters.

Procedure: The program 0 btains a mask with
the specified number of 1bits from a table, shifts

Registers Used: AF, Be, DE, HL

Execution Time: 21 * LOWEST BIT POSITION
plus 86 cycles overhead. (The lowest bit position
determines the number of times the mask must be
shifted left and the bit field right.)

Program Size: 32 bytes

Data Memory Required: None

Special Cases:

I. Requesting a field that would extend beyond
the end of the byte causes the program to return with
only the bits through bit 7. That is, no wraparound is
provided. lf~ for example, the user asks for a 6-bit

Entry Conditions

Starting (lowest) bit position in the field
(0 to 7) in A

Number of bits in the field (1 to 8) in D
Data byte in E

Examples

7A

the mask left to align it with the specified lowest
bit position, and obtains the field by logically
ANDing the mask with the data. It then normal
izes the bit field by shifting it right so that it
starts in bit O.

field starting at bit 5, the program will return only 3
bits (bits 5 through 7).

2. Both the lowest bit position and the number of
bits in the field are interpreted mod 8. That is, for
example, bit position II is equivalent to bit position 3
and a field of 10 bits is equivalent to a field of 2 bits.
Note, however, that the number of bits in the field is
interpreted in the range I to 8. That is, a field of 16
bits is equivalent to a field of 8 bits, not to a field of 0
bits.

3. Requesting a field of width 0 causes a return
with a result of O.

Exit Conditions

Bit field in A (normallzed to bit 0)

I. Data:

Result:

Data value = F6 16 = 111101102 2. Data:
Lowest bit position = 4
Number of bits in the field = 3

Bit field = 07 16 = 00000111 2 Result:
Three bits, starting at bit 4, have been ex

tracted (that is, bits 4 through 6).

Data value = A2 16 101000102
Lowest bit position 6
Number of bits in the field = 5

Bit field = 02 16 = 000000102
Two bits, starting at bit 6, have been ex

tracted (that is, bits 6 and 7); that was all
that was available, although five bits were
requested.

267

268 BIT MANIPULATIONS AND SHIFTS

Title
Name:

Purpose:

Bit Field Extraction
BFE

Extract a field of bits from a byte and
return the field normalized to bit 0
NOTE: IF THE REQUESTED FIELD IS TOO LONG, THEN

ONLY THE BITS THROUGH BIT 7 WILL BE
RETURNED. FOR EXAMPLE, IF A 4-BIT FIELD
REQUESTED STARTING AT BIT 7, ONLY 1
BIT (BIT 7) WILL BE RETURNED.

,
IS;

Entry: Register D
Register E =
Register A =

Number of bits in field (1 to 8)
Data byte
Starting (lowest) bit position in
the field (0 to 7)

Exit: Register A = Field

Registers used: AF,BC,DE,HL

,SHIFT DATA TO NORMALIZE TO BIT 0
; NO SHIFTING NEEDED IF LOWEST POSITION IS 0
AND 00000111B ;ONLY ALLOW POSITIONS 0 TO 7
JR Z,EXTR ;JUMP IF NO SHIFTING NEEDED
LD B,A ;MOVE SHIFT COUNT TO B

BFE:

SHFT:

Time:

Size:

SRL
DJNZ

E
SHFT

86 cycles overhead plus
(21 * lowest bit position) cycles

Program 32 bytes

,SHIFT DATA RIGHT
;CONTINUE UNTIL NORMALIZED

;EXTRACT FIELD BY MASKING WITH I?S
EXTR:

LD A,D ;TEST NUMBER OF BITS FOR ZERO
OR A
RET Z ;EXIT IF NUMBER OF BITS = 0

; FIELD IS 0 ON EXIT
DEC A ;DECREMENT A TO NORMALIZE TO 0
AND 00000111B ;ONLY ALLOW 0 THROUGH 7
LD C,A ;BC INDEX INTO MASK ARRAY
LD B,O
LD HL,MSKARY ;HL = BASE OF MASK ARRAY
ADD HL,BC

LD
AND
RET

A,E
(HL)

7A BIT FIELD EXTRACTION

;GET DATA
;MASK OFF UNWANTED BITS

269

; MASK ARRAY WITH TO 8 ONE BITS
MSKARY:

DB 00000001B
DB 00000011B
DB 00000111B
DB 00001111B
DB 00011111B
DB 00111111B
DB 01111111B
DB 11111111B

SAMPLE EXECUTION:

SC7A:
LD
LD
LD
CALL

.JR

END

E,00011000B
D,3
A,2
BFE

SC7A

;REGISTER E = DATA
;REGISTER D = NUMBER OF BITS
;ACCUMULATOR = LOWEST BIT POSITION
;EXTRACT 3 BITS STARTING WITH #2

RESULT = 00000110B

Bit Field Insertion (BFI)

Inserts a field of bits into a byte. The width of
the field and its starting (lowest) bit position are
parameters.

Procedure: The program obtains a mask with
the specified number of 0 bits from a table. It
then shifts the mask and the bit field left to align

Registers Used: AF, BC, DE, HL

Execution Time: 25 * LOWEST BIT POSITION
plus 133 cycles overhead. (The lowest bit position of
the field determines how many times the mask and
the field must be shifted left.)

Program Size: 40 bytes

Data Memory Required: None

Special Cases:

I. Attempting to insert a field that would extend
beyond the end of the byte causes the program to
insert only the bits through bit 7. That is, no wrap-

Entry Conditions

Data in A
Number of bits in the field (l to 8) in B
Starting (lowest) bit position of field in C
Field to insert in E

Examples

7B

them with the specified lowest bit position. It
logically ANDs the mask with the original data
byte, thus clearing the required bit positions,
and then logically ORs the result with the shifted
bit field.

around is provided. If, for example, the user attempts
to insert a 6-bit field starting at bit 4, only 4 bits (bits 4
through 7) are actually replaced.

2. Both the starting bit position and the width of
the bit field (number of bits) are interpreted mod 8.
That is, for example, bit position II is the same as bit
position 3 and a 12-bit field is the same as a 4-bit field.
Note, however, that the width ofthe field is mapped
into the range I to 8. That is, for example, a 16-bit
field is the same as an 8-bit field.

3. Attempting to insert a field of width 0 causes a
return with a result of O.

Exit Conditions

Result in A
The result is the original data with the bit field

inserted, starting at the specified bit position.

I. Data: Value = F6 16 = 111101102 2. Data:
Lowest bit position = 4
Number of bits in the field = 2
Bit field = 01 16 = 00000001 2

Result: Value with bit field inserted = Result:
06 16 = 110101102

The 2-bit field has been inserted into the origi
nal value starting at bit 4 (into bits 4 and 5).

270

Value = B8 16 = 101110002
Lowest bit position = I
Number of bits in the field = 5
Bit field 15 16 = 00010101 2

Value with bit field inserted = AA I6 =101010102
The 5-bit field has been inserted into the origi-

nal value starting at bit I (into bits I through
5), changing 111002 (lC I6) to 10101 2 (15 16),

Title
Name:

7B BIT FIELD INSERTION (BFI) 271

Bit Field Insertion
BFI

Purpose:

Entry:

Exit:

Insert a field of bits into a byte and return
the byte
NOTE: IF THE REQUESTED FIELD IS TOO LONG,

ONLY THE BITS THROUGH BIT 7 WILL BE
INSERTED. FOR EXAMPLE, IF A 4-BIT FIELD
TO BE INSERTED STARTING AT BIT 7 THEN
ONLY 1 BIT (BIT 7) WILL BE INSERTED.

Register A Byte of data
Register B Number of bits in the field (1

to 8)
Register C Starting (lowest) bit position in

which the data will be inserted
(0 to 7)

Register E = Field to insert

Register A Data

,
IS;

Registers used: AF,BC,DE,HL

Time: 133 cycles overhead plus
(25 * starting bit position) cycles

BFI:

Size:

PUSH AF

Program 40 bytes

;SAVE DATA BYTE

;GET
PUSH
LD
LD
AND
RET

DEC
AND
LD
LD
ADD
LD
POP

MASK WITH REQUIRED
BC
HL,MSKARY
A,B
A
Z

A
00000111B
C,A
B,O
HL,BC
D, (HL)
Be

NUMBER OF 0 BITS
;SAVE STARTING BIT POSITION

;GET NUMBER OF BITS
;TEST NUMBER OF BITS FOR 0
;RETURN WITH 0 RESULT IF NUMBER
; OF BITS IS 0
;NORMALIZE TO 0 ••• 7
;ONLY ALLOW 0 ••. 7

INDEX INTO MASK ARRAY
D = MASK WITH ZEROS FOR CLEARING
RESTORE STARTING BIT

;TEST IF STARTING BIT IS 0

272 BIT MANIPUlATIONS AND SHIFTS

LD
AND
,JR

A,C
00000111B
Z,INSRT

RESTRICT STARTING BIT TO 0•.• 7
,JUMP IF STARtING BIT IS 0

NO ALIGNMENT IS NECESSARY

;ALIGN FIELD TO INSERT AND MASK IF STARTING BIT NON-ZERO
LD B,C ;B = STARTING BIT NUMBER
LD A, D ; A = MASK

SFIELD:
SLA E
RLCA
D.JNZ SFIELD
LD D,A

; INSERT FIELD
INSRT:

POP AF
AND D
OR E
RET

;SHIFT FIELD LEFT TO INSERT
;ROTATE MASK
;CONTINUE UNTIL ALIGNED

;GET DATA BACt<
;AND OFF MASK AREA
;OR IN FIELD

; MASK ARRAY - 1 TO 8 ZERO BITS
MSKARY:

DB 11111110B
DB 11111100B
DB 11111000B
DB 111100008
DB 11100000B
DB 11000000B
DB 100000008
DB 000000008

SAMPLE EXECUTION~

SC7B:
LD
LD
LD
LD
CALL

.JR

END

A,I1111111B
8,3
C,2
E,00000101B
BFI

SC7B

;REGISTER A = DATA
;REGISTER B = NUMBER OF BITS
;REGISTER C LOWEST BIT POSITION
;REGISTER E FIELD TO INSERT
; INSERT 3-BIT FIELD STARTING AT

; BIT 2, RESULT = 111101118

Multiple-Precision Arithmetic Shift Right
(MPASR) 7C

Shifts a multi-byte operand right arithmeti
cally by a specified number of bit positions. The
length of the operand (in bytes) is 255 or less.
The Carry flag is set from the last bit shifted out
of the rightmost bit position. The operand is
stored with its least significant byte at the lowest
address.

Procedure: The program obtains the sign bit
from the most significant byte, saves that bit in
the Carry, and then rotates the entire operand
right one bit, starting with the most significant
byte. It repeats the operation for the specified
number of shifts.

Entry Conditions

Base address of operand in HL
Length of the operand in bytes in B
Number of shifts (bit positions) in C

Examples

Registers Used: AF, BC, DE, HL

Execution Time: NUMBER OF SHIFTS * (46+
34 * LENGTH OF OPERANDS IN BYTES) +
59 cycles

Program Size: 28 bytes

Data Memory Required: None

Special Cases:

I. If the length of the operand is 0, the program
exits immediately with the operand unchanged and
the Carry flag cleared.

2. If the number of shifts is 0, the program exits
immediately with the operand unchanged and the
Carry flag cleared.

Exit Conditions

Operand shifted right arithmetically by the spec
ified number of bit positions. The original sign
bit is extended to the right. The Carry flag is set
from the last bit shifted out of the rightmost bit
position. Carry is cleared if either the number
of shifts or the length of the operand is o.

I. Data:

Result:

Length of operand (in bytes) = 08 2. Data:
Operand = 85A4C719FE06741 E I6
Number of shifts = 04

Shifted operand = F85A4C719FE06741 16 Result:
This is the original operand shifted right four

bits arithmetically; the four most signifi
cant bits all take the value of the original
sign bit (I).

Carry = I, since the last bit shifted from the
rightmost bit position was I.

Length of operand (in bytes) = 04
Operand = 3F6A42D3 16
Number of shifts = 03

Shifted operand = 07ED485A I6
This is the original operand shifted right three

bits arithmetically; the three most signifi
cant bits all take the value of the original
sign bit (0).

Carry = 0, since the last bit shifted from the
rightmost bit position was O.

273

274 BIT MANIPULATIONS AND SHIFTS

Title
Name:

Multiple-Precision Arithmetic Shift Right
MPASR

Purpose: Arithmetic shift right a multi-byte operand
N bits

Entry: Register pair HL = Base address of operand
Register B = Length of operand in bytes
Register C = Number of bits to shift

The operand is stored with ARRAYCOJ as its
least significant byte and ARRAYCLENGTH-IJ
its most significant byte, where ARRAY
is its base address.

Exit: Operand shifted right with the most significant
bit propagated.
CARRY := Last bit shifted from lea.st

significant position.

Registers used: AF,BC,DE,HL

Time: 59 cycles overhead plus
«34 * length) + 46) cycles per shift

Size: Program 28 bytes

MPASR:
;EXIT IF NUMBER OF SHIFTS OR LENGTH OF OPERAND IS 0
;OR CLEARS CARRY IN EITHER CASE
LD A,C
OR A
RET Z ;RETURN IF NUMBER OF SHIFTS IS 0
LD A,B
OR A
RET Z ;RETURN IF LENGTH OF OPERAND IS 0

OPERAND

;HL = ADDRESS OF MSB
;C = NUMBER OF SHIFTS
;A = LENGTH OF OPERAND

;LOOP ON NUMBER OF SHIFTS TO PERFORM
; INITIAL CARRY = MOST SIGNIFICANT BIT OF ENTIRE

;CALCULATE ADDRESS OF MOST SIGNIFICANT (LAST) BYTE
LD E, B ; ADDRESS OF MSB = BASE + LENGTH-l
LD D,O
ADD HL,DE
DEC HL

7C MULTIPLE-PRECISION ARITHMETIC SHIFT RIGHT (MPASR) 275

LOOP:
LD B,(HL) ;GET MOST SIGNIFICANT BYTE
RL B ;CARRY = MOST SIGNIFICANT BIT
LD B,A
LD E,L ;SAVE ADDRESS OF MSB
LD D,H
; ROTATE BYTES RIGHT STARTING WITH MOST SIGNIFICANT

ASRLP:
RR (HL) ;ROTATE A BYTE RIGHT
DEC HL ;DECREMENT TO LESS SIGNIFICANT BYTE
D.JNZ ASRLP

CONT:
LD L,E ;RESTORE ADDRESS OF MSB
LD H,D
DEC C ;DECREMENT NUMBER OF SHIFTS
...JR NZ,LOOP
RET

SAMPLE EXECUTION:

4 BITS IS
c=o

IN MEMORY AY
AY+l =
AY+2
AY+3 =
AY+4
AY+5
AY+6 =

;BASE ADDRESS OF OPERAND
;LENGTH OF OPERAND IN BYTES
;NUMBER OF SHIFTS
;SHIFT

;RESULT OF SHIFTING EDCBA987654321H,
FEDCBA98765432H,

032H
054H
076H
098H
OBAH
ODCH
OFEH

HL,AY
B,SZAY
C,SHIFTS
MPASR

LD
LD
LD
CALL

SC7C:

...JR SC7C

SZAY
SHIFTS
AY:

;DATA SECTION
EQU 7 ;LENGTH OF OPERAND IN BYTES
EQU 4 ;NUMBER OF SHIFTS
DB 21H,43H,65H,87H,OA9H,OCBH,OEDH

END

Multiple-Precision Logical Shift Left
(MPLSL) 7D

Shifts a multi-byte operand left logically by a
specified number of bit positions. The length of
the operand (in bytes) is 255 or less. The Carry
flag is set from the last bit shifted out of the
leftmost bit position. The operand is stored with
its least significant byte at the lowest address.

Procedure: The program clears the Carry
initially (to fill with a 0 bit) and then shifts the
entire operand left one bit, starting with the least
significant byte. It repeats the operation for the
specified number of shifts.

Entry Conditions

Base address of operand in HL
Length of operand in bytes in B
Number of shifts (bit positions) in C

Examples

Registers Used: AF, BC, DE

Execution Time: NUMBER OF SHIFTS * (27+.34*
LENGTH OF OPERAND IN BYTES)+ 31 cycles

Program Size: 21 bytes

Data Memory Required: None

Special Cases:

I. If the length of the operand is 0, the program
exits immediately with the operand unchanged and
the Carry flag cleared.

2. If the number of shifts is 0, the program exits
immediately with the operand unchanged and the
Carry flag cleared.

Exit Conditions

Operand shifted left logically by the specified
number of bit positions (the least significant bit
positions are filled with O's). The Carry flag is set
from the last bit shifted out of the leftmost bit
position. Carry is cleared if either the number of
shifts or the length of the operand is O.

I. Data: Length of operand (in bytes) = 08 2. Data:
Operand = 85A4C719FE06741 E I6
Number of shifts = 04

Result: Shifted operand = 5A4C719FE06741 EO l6 Result:
This is the original operand shifted left four

bits logically; the four least significant bits
are all cleared.

Carry = 0, since the last bit shifted from the
leftmost bit position was O.

276

Length of operand (in bytes) = 04
Operand = .3F6A42D3 16
Number of shifts = 03

Shifted operand = FB521698 16
This is the original operand shifted left three

bits logically; the three least significant bits
are all cleared.

Carry = I, since the last bit shifted from the
leftmost bit position was I.

Title
Name:

Purpose:

Entry:

Exit:

7D MULTIPLE-PRECISION LOGICAL SHIFT LEFT (MPLSL) 277

Multiple-Precision Logical Shift Left
MPLSL

Logical shift left a multi-byte operand
N bits

Register pair HL = Base address of operand
Register B = Length of operand in bytes
Register C = Number of bits to shift

The operand is stored with ARRAY[OJ as its
least significant byte and ARRAY[LENGTH-1J
its most significant byte, where ARRAY
is its base address.

Operand shifted left filling the least
significant bits with zeros
CARRY := Last bit shifted from

most significant position

Registers used: AF,BC,DE

Time:

Size:

31 cycles overhead plus
«34 * length) + 27) cycles per shift

Program 21 bytes

MPLSL:
;EXIT IF NUMBER OF SHIFTS OR LENGTH OF OPERAND IS 0
;OR CLEARS CARRY IN EITHER CASE
LD A,C
OR A
RET Z ;RETURN IF NUMBER OF SHIFTS IS 0
LD A,B
OR A
RET Z ;RETURN IF LENGTH OF OPERAND IS 0

;LOOP ON NUMBER OF SHIFTS TO PERFORM
;A = LENGTH OF OPERAND
;C = NUMBER OF SHIFTS
;HL = ADDRESS OF LEAST SIGNIFICANT (FIRST) BYTE OF OPERAND
;CARRY = 0 INITIALLY FOR LOGICAL SHIFT

LOOP:
LD
LD
LD
OR

E,L
D,H
B,A
A

;SAVE ADDRESS OF LSB

;B = LENGTH OF OPERAND
;CLEAR CARRY FOR LOGICAL SHIFT

278 BIT MANIPUlATIONS AND SHIFTS

;ROTATE BYTES STARTING WITH LEAST SIGNIFICANT
LSLLP:

RL
INC
D..JNZ
LD
LD
DEC
...IR
RET

(HL)
HL
LSLLP
L,E
H,D
C
NZ,LOOP

;ROTATE NEXT BYTE LEFT
; INCREMENT TO MORE SIGNIFICANT BYTE

;RESTORE ADDRESS OF LSB

;DECREMENT NUMBER OF SHIFTS

SAMPLE EXECUTION:

4 BITS IS
c=o

EDCBA987654321H,
DCBA9876543210H,

010H
032H
054H
076H
098H
OBAH
ODCH

IN MEMORY AY
AY+l
AY+2 =
AY+3 =
AY+4 =
AY+5 =
AY+6 =

;HL = BASE ADDRESS OF OPERAND
;B = LENGTH OF OPERAND IN BYTES
;C = NUMBER OF SHIFTS
;SHIFT

;RESULT OF SHIFTING

HL,AY
B,SZAY
C,SHIFTS
MPLSL

LD
LD
LD
CALL

SC7D:

..JR SC7D

SZAY
SHIFTS
AY:

;DATA SECTION
EQU 7 ;LENGTH OF OPERAND IN BYTES
EQU 4 ; NUMBER OF SHIFTS
DB 21H,43H,65H,87H,OA9H,OCBH,OEDH

END

Multiple-Precision Logical Shift Right
(MPLSR) 7E

Shifts a multi-byte operand right logically by
a specified number of bit positions. The length
of the operand (in bytes) is 255 or less. The
Carry flag is set from the last bit shifted out of
the rightmost bit position. The operand is stored
with its least significant byte at the lowest
address.

Procedure: The program clears the Carry
initially (to fill with a 0 bit) and then shifts the
entire operand right one bit, starting with the
most significant byte. It repeats the operation
for the specified number of shifts.

Entry Conditions

Base address of operand in HL
Length of operand in bytes in B
Number of shifts (bit positions) in C

Examples

Registers Used: AF, BC, DE, HL

Execution Time: NUMBEROFSHIFTS *(35+34 *
LENGTH OF OPERAND IN BYTES)+ 59 cycles

Program Size: 26 bytes

Data Memory Required: None

Special Cases:
I. If the length of the operand is 0, the program

exits immediately with the operand unchanged and
the Carry flag cleared.

2. If the number of shifts is 0, the program exits
immediately with the operand unchanged and the
Carry flag cleared.

Exit Conditions

Operand shifted right logically by the specified
number of bit positions. (The most significant
bit positions are filled with O's.)

The Carry flag is set from the last bit shifted out
of the rightmost bit position. Carry is cleared
if either the number of shifts or the length of
the operand is O.

I. Data: Length of the operand (in bytes) = 08 2. Data:
Operand = 85A4C719FE06741 E16
Number of shifts = 04

Result: Shifted operand = 085A4C719FE06741 16 Result:
This is the original operand shifted right

four bits logically; the four most significant
bits are all cleared.

Carry= I, since the last bit shifted from the
rightmost bit position was I.

Length of operand (in bytes) = 04
Operand = 3F6A42D3 16
Number of shifts = 03

Shifted operand = 07ED485A I6
This is the original operand shifted right three

bits logically; the three most significant bits
are all cleared.

Carry = 0, since the last bit shifted from the
rightmost bit position was O.

279

280 BIT MANIPULATIONS AND SHIFTS

Title
Name:

Multiple-Precision Logical Shift Right
MPLSR

Purpc.se: Logical shift right a multi-byte operand N bits

Entry: Register pair HL = Base address of operand
Register B = Length of operand in bytes
Register C = Number of bits to shift

The operand is stored with ARRAYEOJ as its
least significant byte and ARRAYELENGTH-!J
its most significant byte, where ARRAY
is its base address.

Exit: Operand shifted right filling the most
significant bits with zeros

CARRY := Last bit shifted from least
significant position

Registers used: AF,BC,DE,HL

Time: 59 cycles overhead plus
«34 * length) + 35) cycles per shift

Size: Program 26 bytes

MPLSR:
;EXIT IF NUMBER OF SHIFTS OR LENGTH OF OPERAND IS 0
;OR CLEARS CARRY IN EITHER CASE
LD A,C
OR A
RET Z ;RETURN IF NUMBER OF SHIFTS IS 0
LD A,B
OR A
RET Z ;RETURN IF LENGTH OF OPERAND IS 0

OF MOST SIGNIFICANT (LAST) BYTE
;ADDRESS OF MSB = BASE+LENGTH-!

;HL = ADDRESS OF MSB
;C = NUMBER OF SHIFTS
;A = LENGTH OF OPERAND

;LOOP ON NUMBER OF SHIFTS TO PERFORM
;START WITH CARRY = 0 FOR LOGICAL SHIFT

;CALCULATE ADDRESS
LD E,B
LD D,O
ADD HL,DE
DEC HL

7E MULTIPLE-PRECISION LOGICAL SHIFT RIGHT (MPLSf<) 281

;RESTORE ADDRESS OF MSB

;ROTATE A BYTE RIGHT
;DECREMENT TO LESS SIGNIFICANT BYTE

;DECREMENT NUMBER OF SHIFTS

;CLEAR CARRY FOR LOGICAL SHIFT
;B = LENGTH OF OPERAND
;SAVE ADDRESS OF MSB

(HL)
HL
LSRLF'
L,E
H,D
C
NZ,LOOF'

RR
DEC
D.JNZ
LD
LD
DEC
,JR
RET

OR A
LD B,A
LD E,L
LD D,H
;ROTATE BYTES STARTING WITH MOST SIGNIFICANT

LSRLF':

LOOF':

SAMPLE EXECUTION:

SC7E:
LD HL,AY ;HL = BASE ADDRESS OF OPERAND
LD B,SZAY;B = LENGTH OF OPERAND IN BYTES
LD C,SHIFTS ;C = NUMBER OF SHIFTS
CALL MPLSR ;SHIFT

;RESULT OF SHIFTING EDCBA987654321H, 4 BITS IS
OEDCBA98765432H, C=O

IN MEMORY AY 032H
AY+l 054H
AY+2 076H
AY+3 098H
AY+4 OBAH
AY+5 ODCH
AY+6 = OOEH

,JR SC7E

SZAY
SHIFTS
AY:

;DATA SECTION
EQU 7 ;LENGTH OF OF'ERAND IN BYTES
EQU 4 ;NUMBER OF SHIFTS
DB 21H,43H,65H,87H,OA9H,OCBH,OEDH

END

Multiple-Precision Rotate Right (MPRR) 7F

Rotates a multi-byte operand right by a spec
ified number of bit positions as ifthe most signif
icant bit and least significant bit were connected.
The length of the operand (in bytes) is 255 or
less. The Carry flag is set from the last bit shifted
out ofthe rightmost bit position. The operand is
stored with its least significant byte at the lowest
address.

Procedure: The program shifts bit 0 of the
least significant byte of the operand to the Carry
flag and then rotates the entire operand right
one bit, starting with the most significant byte. It
repeats the operation for the specified number
of rotates.

Entry Conditions

Base address of operand in HL
Length of operand in bytes in B
Number of rotates (bit positions) in C

Examples

Registers Used: AF, BC, DE, HL, IX

Execution Time: NUMBER OF ROTATES * (58 +
34 * LENGTH OF OPERAND IN BYTES) + 83
cycles

Program Size: 33 bytes

Data Memory Required: None

Special Cases:
I. If the length of the operand is 0, the program

exits immediately with the operand unchanged and
the Carry flag cleared.

2. If the number of rotates is 0, the program exits
immediately with the operand unchanged and the
Carry flag cleared.

Exit Conditions

Operand rotated right logically by the specified
number of bit positions (the most significant bit
positions are filled from the least significant bit
positions). The Carry flag is set from the last bit
shifted out of the rightmost bit position. Carry is
cleared if either the number of rotates or the
length of the operand is O.

I. Data: Length of operand (in bytes) = 08 2. Data:
Operand = 85A4C719FE06741 E I6
Number of rotates = 04

Result: Rotated operand E85A4C719FE06741 16 Result:
This is the original operand rotated right four

bits; the four most significant bits are equiv
alent to the original four least significant
bits.

Carry = I, since the last bit shifted from the
rightmost bit position was I.

282

Length of operand (in bytes) = 04
Operand = 3F6A42D3 16
Number of rotates = 03

Rotated operand = 67ED485A I6
This is the original operand rotated right

three bits; the three most significant bits are
equivalent to the original three least signif
icant bits.

Carry = 0, since the last bit shifted from the
rightmost bit position was 0.

7F MULTIPLE-PRECISION I<OTATE RIGHT (MPRR) 283

Title
Name:

Multiple-Precision Rotate Right
MPRR

Purpose: Rotate right a multi-byte operand N bits

Entry: Register pair HL = Base address of operand
Register B = Length of operand in bytes
Register C = Number of bits to rotate

The operand is stored with ARRAY[OJ as its
least significant byte and ARRAY[LENGTH-1J
its most significant byte. where ARRAY
is its base address.

Exit: Operand rotated right
CARRY := Last bit shifted from least

significant position

Registers used: AF.BC.DE.HL.IX

Time: 83 cycles overhead plus
«34 * length) + 58) cycles per rotate

Size: Program 33 bytes

MPRR:
;EXIT IF NUMBER OF ROTATES OR LENGTH OF OPERAND IS 0
;OR CLEARS CARRY IN EITHER CASE
LD A.C
OR A
RET Z ;RETURN IF NUMBER OF ROTATES IS 0
LD A.B
OR A
RET Z ;RETURN IF LENGTH OF OPERAND IS 0

BYTE)

;IX POINTS TO LSB (FIRST BYTE)
; ADDRESS OF MSB = BASE + LENGTH-l

;HL POINTS TO MSB (LAST
;C = NUMBER OF ROTATES
;A = LENGTH OF OPERAND

NUMBER OF ROTATES TO PERFORM
LEAST SIGNIFICANT BIT OF ENTIRE OPERAND

;LOOP ON
;CARRY =

;CALCULATE ADDRESS OF MOST SIGNIFICANT (LAST) BYTE
PUSH HL
POP IX
LD E.B
LD D.O
ADD HL.DE
DEC HL

284 BIT MANIPULATIONS AND SHIFTS

;RESTORE ADDRESS OF MSB

;GET LSB
;CARRY = BIT 0 OF LSB
;B = LENGTH OF OPERAND IN BYTES
;SAVE ADDRESS OF MSB

;DECREMENT NUMBER OF ROTATES

;ROTATE A BYTE RIGHT
;DECREMENT TO LESS SIGNIFICANT BYTE

B, (IX+O)
B
B,A
E,L
D,H
BYTES RIGHT STARTING WITH MOST SIGNIFICANT

(HL)
HL
RRLP
L,E
H,D
C
NZ,LOOP

LD
RR
LD
LD
LD
; ROTATE

RR
DEC
D.JNZ
LD
LD
DEC
.JR
RET

LOOP:

RRLP:

SAMPLE EXECUTION:

SC7F:
LD HL,AY ;BASE ADDRESS OF OPERAND
LD B,SZAY ;LENGTH OF OPERAND IN BYTES
LD C,ROTATS ;NUMBER OF ROTATES
CALL MPRR ; ROTATE

;RESULT OF ROTATING EDCBA987654321H, 4 BITS IS
lEDCBA98765432H, C=O

IN MEMORY AY 032H
AY+l 054H
AY+2 076H
AY+3 098H
AY+4 OBAH
AY+5 ODCH
AY+6 01EH

,JR SC7F

SZAY
ROTATS
AY:

;DATA SECTION
EQU 7 ;LENGTH OF OPERAND IN BYTES
EQU 4 ; NUMBER OF ROTATES
DB 21H,43H,65H,87H,OA9H,OCBH,OEDH

END

Multiple-Precision Rotate Left (MPRL) 7G

Rotates a multi-byte operand left by a speci
fied number of bit positions as if the most signif
icant bit and least significant bit were connected.
The length of the operand (in bytes) is 255 or
less. The Carry flag is set from the last bit shifted
out of the leftmost bit position. The operand is
stored with its least significant byte at the lowest
address.

Procedure: The program shifts bit 7 of the
most significant byte of the operand to the
Carry flag. It then rotates the entire operand left
one bit, starting with the least significant byte. It
repeats the operation for the specified number
of rotates.

Entry Conditions

Base address of operand in HL
Length of operand in bytes in B
Number of rotates (bit positions) in C

Examples

1. Data: Length of operand (in bytes) = 08
Operand = 85A4C7I9FE06741 E I6
Number of rotates = 04

Result: Rotated operand = 5A4C719FE0674lE8 16
This is the original operand rotated left four

bits; the four least significant bits are equiv
alent to the original four most significant
bits.

Carry = 0, since the last bit shifted from the
leftmost bit position was 0.

Registers Used: AF, BC, DE, HL, IX

Execution Time: NUMBER OF ROTATES * (58 +
34 * LENGTH OF OPERAND IN BYTES) + 104
cycles

Program Size: 35 bytes

Data Memory Required: None

Special Cases:

I. If the length of the operand is 0, the program
exits immediately with the operand unchanged and
the Carry flag cleared.

2. If the number of rotates is 0, the program exits
immediately with the operand unchanged and the
Carry flag cleared.

Exit Conditions

Operand rotated left the specified number of bit
positions (the least significant bit positions are
filled from the most significant bit positions).
The Carry flag is set from the last bit shifted out
of the leftmost bit position. Carry is cleared if
either the number of rotates or the length of the
operand is O.

2. Data: Length of operand (in bytes) = 04
Operand = 3F6A42D3 16
Number of rotates = 03

Result: Rotated operand = FB521699 16
This is the original operand rotated left three

bits; the three least significant bits are equiv
alent to the original three most significant
bits.

Carry = I, since the last bit shifted from the
leftmost bit position was I.

285

286 BIT MANIPULATIONS AND SHIFTS

Title
Name:

Multiple-Precision Rotate Left
MPRL

Purpose: Rotate left a multi-byte operand N bits

Entry: Register pair HL = Base address of operand
Register B = Length of operand in bytes
Register C = Number of bits to rotate

The operand is stored with ARRAY[OJ as its
least significant byte and ARRAY[LENGTH-IJ
its most significant byte, where ARRAY
is its base address.

Exit: Operand rotated left
CARRY := Last bit shifted from most

significant position

Registers used: AF,BC,DE,HL,IX

Time: 104 cycles overhead plus
«34 * length) + 58) cycles per rotate

Size: Program 35 bytes

MPRL:
:EXIT IF NUMBER OF ROTATES OR LENGTH OF OPERAND IS 0
:OR CLEARS CARRY IN EITHER CASE
LD A,C
OR A
RET Z :RETURN IF NUMBER OF ROTATES IS 0
LD A,B
OR A
RET Z ;RETURN IF LENGTH OF OPERAND IS 0

;IX POINTS TO MOST SIGNIFICANT BYTE
;HL POINTS TO LEAST SIGNIFICANT BYTE
:C = NUMBER OF ROTATES
;A = LENGTH OF OPERAND

ROTATES TO PERFORM

ADDRESS OF MOST SIGNIFICANT (LAST) BYTE
;SAVE ADDRESS OF FIRST BYTE
;ADDRESS OF MSB = BASE+LENGTH-l

; CALCULATE
PUSH HL
LD E,B
LD D,O
ADD HL,DE
DEC HL
PUSH HL
POP IX
POP HL

:LOOP ON NUMBER OF

7G MULTIPLE-PI<EClSION ROTATE LEFT (MPRL) 287

;CARRY = MOST SIGNIFICANT BIT OF ENTIRE OPERAND
LOOP:

LD B, (IX+(l)
RL B
LD B,A
LD E,L
LD D,H
; ROTATE BYTES LEFT

RLLP:
RL (HL)
INC HL
D.JNZ RLLP
LD L,E
LD H,D
DEC C
,JR NZ,LOOP
RET

;GET MOST SIGNIFICANT BYTE
;CARRY = BIT 7 OF MSB
;B = LENGTH OF OPERAND IN BYTES
;SAVE ADDRESS OF LSB

STARTING WITH LEAST SIGNIFICANT

;ROTATE A BYTE LEFT
; INCREMENT TO MORE SIGNIFICANT BYTE

;RESTORE ADDRESS OF LSB

;DECREMENT NUMBER OF ROTATES

SC7G:

SZAY
ROTATS
AY:

SAMPLE EXECUTION:

LD HL,AY ;HL = BASE ADDRESS OF OPERAND
LD B,SZAY ;B = LENGTH OF OPERAND IN BYTES
LD C,ROTATS ;C = NUMBER OF ROTATES
CALL MPRL ; ROTATE

;RESULT OF ROTATING EDCBA987654321H, 4 BITS IS
DCBA987654321EH, c=o

IN MEMORY AY 01EH
AY+l 032H
AY+2 054H
AY+3 076H
AY+4 098H
AY+5 OBAH
AY+6 ODCH

.JR SC7G

;DATA SECTION
EQU 7 ;LENGTH OF OPERAND IN BYTES
EQU 4 ;NUMBER OF ROTATES
DB 21H,43H,65H,87H,OA9H,OCBH,OEDH

END

String Compare (STRCMP) 8A

Compares two strings and sets the Carry and
Zero flags appropriately. The Zero flag is set to I
if the strings are identical and to 0 otherwise.
The Carry flag is set to 1 if the string with the
base address in DE (string 2) is larger than the
string with the base address in HL (string 1); the
Carry flag is set to 0 otherwise. The strings are a
maximum of 255 bytes long and the actual
characters are preceded by a byte containing the
length. If the two strings are identical through
the length of the shorter, the longer string is
considered to be larger.

Procedure: The program first determines which
string is shorter from the lengths that precede
the actual characters. It then compares the
strings one byte at a time through the length of
the shorter. The program exits with the flags set
if it finds corresponding bytes that differ. If the
strings are the same through the length of the

Entry Conditions

Base address of string 2 in DE
Base address of string 1 in HL

288

Registers Used: AF, BC, DE, HL

Execution Time:
I. If the strings are not identical through the

length ofthe shorter, the time is 91 +60 * NUMBER
OF CHARACTERS COMPARED. If, for example,
the routine compares five characters before finding a
disparity, the execution time is

91 + 60 * 5 = 91 + 300 = 391 cycles

2. If the strings are identical through the length of
the shorter, the time is 131 + 60 * LENGTH OF
SHORTER STRING. If, for example, the shorter
string is eight bytes long, the execution time is

131 + 60 * 8 = 131 + 480 = 611 cycles

Program Size: 32 bytes

Data Memory Required: Two bytes anywhere in
RAM for the lengths of the strings (addresses
LENS 1 and LENS2).

shorter, the program sets the flags by comparing
the lengths.

Exit Conditions

Flags set as if string 2 had been subtracted from
string 1. If the strings are the same through
the length of the shorter, the flags are set as if
the length of string 2 had been subtracted
from the length of string 1.

Zero flag = 1 if strings are identical, 0 if they are
not.

Carry flag = 1 if string 2 is larger than string 1, 0
if they are identical or string 1 is larger. If the
strings are the same through the length of the
shorter, the longer one is considered to be
larger.

8A STr~ING COMPARE (STRCMP) 289

Examples

I. Data:

Result:

String 1= 05'PRINT' (05 is the length of the 3. Data:
string)

String 2 = 03'END' (03 is the length of the
string)

Zero flag = 0 (strings are not identical) Result:
Carry flag = 0 (string 2 is not larger than

string I)

String I 05'PRINT' (05 is the length of the
string)

String 2 = 06'SYSTEM' (06 is the length of
the string)

Zero flag = 0 (strings are not identical)
Carry flag = I (string 2 is larger than string I)

2. Data: String I = 05'PRINT' (05 is the length of the
string)

String 2 = 02'PR' (02 is the length of the
string)

Result: Zero flag = 0 (strings are not identical)
Carry flag = 0 (string 2 is not larger than

string I)

The longer string (string 1) is considered to be
larger. Ifyou want to determine whether string 2
is an abbreviation of string 1, you could use
Subroutine 8C (Find the Position of a Substring)
and determine whether string 2 was part of
string 1 and started at the first character.

We are assuming here that the strings consist

of ASCII characters. Note that the byte preceding
the actual characters contains a hexadecimal
number (the length of the string), not a character.
We have represented this byte as two hexadecimal
digits in front of the string. The string itself is
shown surrounded by single quotation marks.
These serve only to delimit strings in the examples;
they are not actually part of the data. This
format is used to display string data in the
examples throughout this chapter.

This routine treats spaces like other charac
ters. If, for example, the strings are ASCII, the
routine will find that SPRINGMAID is larger
than SPRING MAID, since an ASCII M (4D I6)

is larger than an ASCII space (2016)'

Title
Name:

Purpose:

String compare
STRCMP

Compare 2 strings and return C and Z flags set
or cleared

Entry: Register pair HL
Register pair DE =

Base address of string 1
Base address of string 2

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

290 STRING MANIPUlATION

Exit: IF string string 2 THEN
Z=l,C=O

IF string > string 2 THEN
Z=O,C=O

IF string < string 2 THEN
Z=O,C=l

Registers used: AF,BC,DE,HL

Time:

Size:

91 cycles overhead plus 60 cycles per byte plus
40 cycles if strings are identical
through length of shorter

Program 32 bytes
Data 2 bytes

;SAVE LENGTH OF STRING 2

;COMPARE TO LENGTH OF STRING
;JUMP IF STRING 2 IS SHORTER
;ELSE STRING 1 IS SHORTER

STRCMP:
;DETERMINE WHICH STRING IS SHORTER
;LENGTH OF SHORTER NUMBER OF BYTES
LD A, (HL) ;SAVE LENGTH
LD (LENS1),A
LD A, (DE)
LD (LENS2),A
CP (HL)
JR C,BEGCMP
LD A, (HL)

TO COMPARE
OF STRING 1

;COMPARE STRINGS THROUGH LENGTH OF SHORTER
BEGCMP:

CMPLP:

OR
JR

LD
EX

INC
INC
LD
CP
RET

DJNZ

A
Z,CMPLEN

B,A
DE,HL

HL
DE
A, (DE)
(HL)
NZ

CMPLP

;TEST LENGTH OF SHORTER STRING
;COMPARE LENGTHS
, IF LENGTH IS ZERO
;B = NUMBER OF BYTES TO COMPARE
;DE = STRING 1
;HL = STRING 2

; INCREMENT TO NEXT BYTES

;GET A BYTE OF STRING 1
;COMPARE TO BYTE OF STRING 2
;RETURN WITH FLAGS SET IF BYTES
; NOT EQUAL
;CONTINUE THROUGH ALL BYTES

;STRINGS SAME THROUGH LENGTH OF SHORTER
;SO USE LENGTHS TO SET FLAGS

CMPLEN: LD A, (LENS1) ;COMPARE LENGTHS
LD HL,LENS2
CP (HL)
RET ;RETURN WITH FLAGS SET OR CLEARED

; DATA
LENS1: DS
LENS2: DS

1
1

;LENGTH OF STRING 1
;LENGTH OF STRING 2

SAMPLE EXECUTION:

8A STRING COMPARE (STRCMP) 291

SC8A:
LD HL,S1 ;BASE ADDRESS OF STRING 1
LD DE,S2 ;BASE ADDRESS OF STRING 2
CALL STRCMP ;COMPARE STRINGS

;COMPARING "STRING 111 AND "STRING '")11
&;.

; RESULTS IN STRING 1 LESS THAN
; STRING 2, SO Z=O,C=1

,JR SC8A ;LOOP FOR ANOTHER TEST

S1 : DB 20H,"'STRING 1 ...

S2: DB 20H, "STRING 2

END

String Concatenation (CONCAT) 88

Combines (concatenates) two strings, placing
the second immediately after the first in memory.
If the concatenation produces a string longer
than a specified maximum, the program con
catenates only enough of string 2 to give the
combined string its maximum length. The Carry
flag is cleared if all of string 2 can be concatenated
or set to I if part of string 2 must be dropped.
Both strings are a maximum of 255 bytes long
and the actual characters are preceded by a byte
containing the length.

Procedure: The program uses the length of

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 21 * NUMBER
OF CHARACTERS CONCATENATED plus 288
cycles overhead. NUMBER OF CHARACTERS
CONCATENATED is normally the length of string
2, but it will be the maximum length of string I minus
its current length if the combined string would be too
long. If, for example, NUM BER OF CHARACTERS
CONCATENATED is 14 16 (20 10), the execution time
is

21 * 20 + 288 = 420 + 288 = 708 cycles

Program Size: 83 bytes

Data Memory Required: Five bytes anywhere in
RA M for the base address of string I (2 bytes starting
at address S IADR), the lengths of the strings
(addresses S ILEN and S2LEN), and a flag that

Entry Conditions

Base address of string 2 in DE
Base address of string 1 in HL
Maximum length of string 1 in B

292

string I to determine where to start adding char
acters and the length of string 2 to determine how
many characters to add. If the sum ofthe lengths
exceeds the maximum, the program indicates an
overflow and reduces the number of characters it
must add (the number is the maximum length
minus the length of string 1). It then moves the
appropriate number of characters from string 2
to the end of string 1, updates the length of string
1, and sets the Carry flag to indicate whether any
characters were discarded.

indicates whether the combined strings overflowed
(address STRGOY).

Special Cases:
I. If concatenating would make the string longer

than its specified maximum length, the program
concatenates only enough of string 2 to reach the
maximum. If any of string 2 must be truncated, the
Carry flag is set to I.

2. If string 2 has a length of 0, the program exits
with the Carry flag cleared (no errors) and string I
unchanged. That is, a length of 0 for either string is
interpreted as 0, not as 256.

3. If the original length of string I exceeds the
specified maximum, the program exits with the
Carry flag set to I (indicating an error) and string I
unchanged.

Exit Conditions

String 2 concatenated at the end of string 1 and
the length of string 1 increased appropriately. If
the resulting string would exceed the maximum
length, only the part of string 2 that would give
string 1 its maximum length is concatenated. If
any part of string 2 must be dropped, the Carry
flag is set to 1. Otherwise, the Carry flag is
cleared.

88 STRIi\JG CONCATENATION (CONCAT) 293

Examples

Result:

I. Data: Maximum length of string I = OE l6 = 14 10 2. Data:
String I = 07'JOHNSON' (07 is the length of

the string)
String 2 = 05',DON' (05 is the length of the

string) Result:

String 1= OC'JOHNSON, DON'(OC I6 = 12 10
is the length of the combined string with
string 2 placed after string I)

Carry = 0, since the concatenation did not
produce a string exceeding the maximum
length.

Note that we are representing the initial byte
(containing the length of the string) as two
hexadecimal digits in both examples.

String I 07'JOHNSON' (07 is the length of
the string)

String 2= 09',RICHARD'(09 is the length of
the string)

String I = OE'JOHNSON, RICHA' (OE I6 =
14 10 is the maximum length allowed, so the
last two characters of string 2 have been
dropped)

Carry = I, since the concatenation produced
a string longer than the maximum length.

Title
Name:

Purpose:

Entry:

Exit:

String Concatenation
CONCAT

Concatenate 2 strings into one string

Register pair HL = Base address of string 1
Register pair DE = Base address of string 2
Register B = Maximum length of string 1

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

String 1 := string 1 concatenated with string 2
If no errors then

CARRY := 0
else

begin
CARRY := 1
if the concatenation makes string 1 too
long, concatenate only enough of string 2
to give string 1 its maximum length.
if length(stringl) > maximum length then

no concatenation is done
end;

294 STRING MANIPULATION

Registers used: AF,BC,DE,HL

Time:

Size:

Approximately 21 * (length of string 2) cycles
plus 288 cycles overhead

Program 83 bytes
Data 5 bytes

CONCAT:
;DETERMINE WHERE TO START CONCATENATING
;CONCATENATION STARTS AT THE END OF STRING 1
;END OF STRING 1 = BASEl + LENGTHl + 1, WHERE
; THE EXTRA 1 MAKES UP FOR THE LENGTH BYTE
;NEW CHARACTERS COME FROM STRING 2, STARTING AT
, BASE2 + 1 (SKIPPING OVER LENGTH BYTE)
LD (SlADR),HL ;SAVE ADDRESS OF STRING 1
PUSH BC ;SAVE MAXIMUM LENGTH OF STRING 1
LD A,(HL) ;SAVE LENGTH OF STRING 1
LD (SlLEN),A
LD C,A ;ENDl = BASEl + LENGTHl + 1
LD B,O
ADD HL,BC
INC HL ;HL = START OF CONCATENATION
LD A, (DE) ;SAVE LENGTH OF STRING 2
LD (S2LEN),A
INC DE ;DE = FIRST CHARACTER OF STRING 2
POP BC ;RESTORE MAXIMUM LENGTH

;DETERMINE HOW MANY
LD C,A
LD A, (SlLEN)
ADD A,C
JR C,TOOLNG
CP B
,.JR Z , LENOK
..JR C, LENOK

CHARACTERS TO CONCATENATE
;ADD LENGTHS OF STRINGS

;JUMP IF SUM EXCEEDS 255
;COMPARE TO MAXIMUM LENGTH
;JUMP IF NEW STRING IS MAX LENGTH
; OR LESS

;COMBINED STRING IS TOO LONG
INDICATE A STRING OVERFLOW, STRGOV := OFFH

; NUMBER OF CHARACTERS TO CONCATENATE MAXLEN - SlLEN
; LENGTH OF STRING 1 = MAXIMUM LENGTH

TOOLNG:
LD
LD
LD
LD
LD
SUB
RET
LD
LD
LD
JR

A,OFFH
(STRGOV),A
A, (SlLEN)
C,A
A,B
C
C
(S2LEN),A
A,B
(SlLEN),A
DOCAT

; INDICATE STRING OVERFLOW

;CALCULATE MAXLEN - SlLEN

;EXIT IF ORIGINAL STRING TOO LONG
;CHANGE S2LEN TO MAXLEN - SlLEN
;LENGTH OF STRING 1 = MAXIMUM

;PERFORM CONCATENATION

8B STRING CO~~CL\TENATION (CONCAT) 295

;RESULTING LENGTH DOES NOT EXCEED MAXIMUM
; LENGTH OF STRING 1 = SILEN + S2LEN
; INDICATE NO OVERFLOW, STRGOV := 0
; NUMBER OF CHARACTERS TO CONCATENATE = LENGTH OF STRING 2

LENOK:
LD
SUB
LD

(SILEN),A
A
(STRGOV),A

;SAVE SUM OF LENGTHS
; INDICATE NO OVERFLOW

;CONCATENATE STRINGS BY MOVING CHARACTERS FROM STRING 2
; TO END OF STRING 1

DOCAT:
LD
OR
.JR
LD
LD
EX

LDIR

EXIT:
LD
LD
LD
LD
RRA
RET

; DATA
SIADR: OS
SILEN: DS
S2LEN: DS
STRGOV: DS

A, (S2LEN)
A
Z,EXIT
C,A
B,O
DE,HL

A, (SILEN)
HL, (SIADR)
(HL), A
A, (STRGOV)

2
1
1
1

;GET NUMBER OF CHARACTERS

;EXIT IF NOTHING TO CONCATENATE
;BC = NUMBER OF CHARACTERS

;DE = DESTINATION
;HL = SOURCE
;MOVE CHARACTERS

;ESTABLISH NEW LENGTH OF STRING 1

;CARRY = 1 IF OVERFLOW, 0 IF NOT

;BASE ADDRESS OF STRING 1
;LENGTH OF STRING 1
;LENGTH OF STRING :2
;STRING OVERFLOW FLAG

SAMPLE EXECUTION:

SCSB:
LD
LD
LD
CALL

JR

HL,SI
DE,S:2
B,:20H
CONCAT

SCSB

;HL = BASE ADDRESS OF SI
;DE = BASE ADDRESS OF S2
;B = MAXIMUM LENGTH OF STRING 1
;CONCATENATE STRINGS

;RESULT OF CONCATENATING
; ItLASTNAME It AND It, FIRSTNAME It
; IS SI = 13H, lt LASTNAME, FIRSTNAME It

SI :
;TEST DATA, CHANGE FOR OTHER VALUES
DB 8H ;LENGTH OF SI
DB ~LASTNAME ~ ;32 BYTE MAX LENGTH

296 STRING MANIPULATION

52: DB
DB

END

OBH
", FIR8TNAME

;LENGTH OF 82
;32 BYTE MAX LENGTH

Find the Position of a Substring (POS) 8e

Searches for the first occurrence of a substring
within a string. Returns the index at which the
substring starts if it is found and 0 if it is not
found. The string and the substring are both a
maximum of 255 bytes long, and the actual
characters are preceded by a byte containing the
length. Thus, if the substring is found, its starting
index cannot be less than 1 or more than 255.

Registers Used: AF, BC, DE, HL

Execution Time: Data-dependent, but the overhead
is 157 cycles, each successful match of I character
takes 56 cycles, and each unsuccessful match of I
character takes 148 cycles. The worst case is when the
string and substring always match except for the last
character in the substring, such as

String = 'AAAAAAAAB'
Substring 'AAB'

The execution time in that case is
(STRING LENGTH SUBSTRING LENGTH

+ 1) * (56 * (SUBSTRING LENGTH - I) +
148) + 154

If, for example, STRING LENGTH = 9 and SUB
STRING LENGTH 3 (as in the case shown), the
execution time is

(9 3+ 1)*(56*(3 1)+ 148)+ 154=7*260+
154 = 1820 + 154 1974 cycles

Program Size: 69 bytes

Data Memory Required: Seven bytes anywhere in
RAM for the base address of the string (2 bytes

Entry Conditions

Base address of substring in DE
Base address of string in HL

Procedure: The program searches the string
for the substring until either it finds the substring
or the remaining part of the string is shorter
than the substring and hence cannot possibly
contain it. If the substring is not in the string, the
program clears the accumulator; otherwise, the
program places the starting index of the substring
in the accumulator.

starting at address STRING), the base address of the
substring (2 bytes starting at address SUBSTG), the
length of the string (address SLEN), the length of the
substring (address SU BL EN), and the current starting
index in the string (address INDEX).

Special Cases:

I. If either the string or the substring has a length
of 0, the program exits with 0 in the accumulator~

indicating that it did not find the substring.

2. If the substring is longer than the string, the
program exits with 0 in the accumulator, indicating
that it did not find the substring.

3. If the program returns an index of I, the
substring may be regarded as an abbreviation of the
string. That is, the substring occurs in the string,
starting at the first character. A typical example
would be a string PRINT and a substring PRo

4. If the substring occurs more than once in the
string, the program will return only the index to the
first occurrence (the occurrence with the lowest
starting index).

Exit Conditions

A contains index at which first occurrence of
substring starts if it is found and contains 0 if
substring is not found.

297

298 STRING MANIPULATION

Examples

L Data: String = ID'ENTER SPEED IN MILES 3. Data: String= IO'LETYI = XI + R7'(10 16 = 16 10 is
PER HOUR' (lD 16 = 29 10 is the length of the length of the string)
the string) Substring = 02'R4' (02 is the length of the

Substring = 05'MILES' (05 is the length of substring)
the substring) Result: A contains 0, since the substring 'R4' does not

Result: A contains 10 16 (16 10), the index at which the appear in the string LET YI Xl + R7.
substring 'MILES' starts.

String = 07'RESTORE' (07 is the length of4. Data:
the string)

Substring = 03'RES' (03 is the length of the
2. Data: String = IB'SALES FIGURES FOR JUNE substring)

1981' (I B16 = 27 10 is the length ofthe string)
Result: A contains I, the index at which the substringSubstring = 04'JUNE' (04 is the length of the

'RES' starts. An index of I indicates that
substring)

the substring could be an abbreviation of
Result: A contains 13 16 (19 10), the index at which the the string. Interactive programs, such as

substring 'JUNE' starts. BASIC intepreters and word processors,
often use such abbreviations to save on
typing and storage.

Title
Name:

Put"pose:

Find the position of a substring in a string
POS

Search for the first occurrence of a substring
within a string and return its starting index.
If the substring is not found a 0 is returned.

EntrY: Register pair HL =
Register pail'" DE

Base address of string
Base address of substring

Exit:

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

If the substring is found then
Register A its starting index

else
Register A 0

Registers used: AF,BC,DE,HL

Time: Since the algorithm is so data-dependent,

8e FIND THE POSITION OF A SUBSTRING (POS) 299

a simple formula is impossible; but the
following statements are true, and a
worst case is given.

154 cycles overhead
Each match of 1 character takes 56 cycles
A mismatch takes 148 cycles

Worst case timing will be when the
string and substring always match
except for the last character of the
substring, such as

string = ~AAAAAAAAAB~

substring = ~AAB~

Size: Pt-ogt-am 69 bytes
Data 7 bytes

;TEST LENGTH OF SUBSTRING

;EXIT IF LENGTH OF STRING = 0

:C = SUBSTRING LENGTH
;TEST LENGTH OF STRING

;EXIT IF LENGTH OF SUBSTRING = 0
;MOVE PAST LENGTH BYTE OF SUBSTRING
;SAVE SUBSTRING ADDRESS

;SET UP TEMPORARIES
;EXIT IF STRING OR SUBSTRING HAS ZERO LENGTH
LD (STRING),HL ;SAVE STRING ADDRESS
EX DE,HL
LD A, (HL)
OR A
JR Z,NOTFND
INC HL
LD (SUBSTG),HL
LD (SUBLEN),A
LD C,A
LD A, (DE)
OR A
JR Z,NOTFND

POS:

;NUMBER OF SEARCHES STRING LENGTH - SUBSTRING LENGTH
; + 1. AFTER THAT, NO USE SEARCH I NG SINCE THERE AREN·' T
; ENOUGH CHARACTERS LEFT TO HOLD SUBSTRING

;IF SUBSTRING IS LONGER THAN STRING, EXIT IMMEDIATELY AND
; INDICATE SUBSTRING NOT FOUND
SUB C ;A = STRING LENGTH - SUBSTRING LENGTH
JR C,NOTFND ;EXIT IF STRING SHORTER THAN SUBSTRING
INC A ;COUNT = DIFFERENCE IN LENGTHS + 1
LD B,A
SUB A ;INITIAL STARTING INDEX = 0
LD (INDEX),A

;SEARCH UNTIL REMAINING STRING SHORTER THAN SUBSTRING
SLP1 :

LD
INC
LD
LD

HL,INDEX
(HL)
HL,SUBLEN
C, (HL)

; INCREMENT STARTING INDEX

;C = LENGTH OF SUBSTRING

300 STRING MANIPULATION

;..JUMP IF SUBSTRING FOUND
;PROCEED TO NEXT CHARACTERS

;GET A CHARACTER OF SUBSTRING
;COMPARE TO CHARACTER OF STRING
;..JUMP IF NOT SAME

HL,(STRING)
HL
(STRING),HL
DE, (SUBSTG)

A, (DE)
(HL)
NZ,SLP2
C
Z,FOUND
HL
DE
CMPLP

; INCREMENT TO NEXT BYTE OF STRING

;HL = NEXT ADDRESS IN STRING
;DE = STARTING ADDRESS OF SUBSTRING
;C = CURRENT VALUE OF COUNT

;TRY TO MATCH SUBSTRING STARTING AT INDEX
;MATCH INVOLVES COMPARING CORRESPONDING CHARACTERS
; ONE AT A TIME

LD
INC
LD
LD

LD
CP
..JR
DEC
•.JR
INC
INC
..JR

CMPLP:

;ARRIVE HERE IF MATCH FAILS, SUBSTRING NOT YET FOUND
SLP2:

D.JNZ

.JR

SLPl

NOTFND

;TRY NEXT HIGHER INDEX IF
; ENOUGH STRING LEFT
;ELSE EXIT NOT FOUND

;FOUND SUBSTRING, RETURN ITS STARTING INDEX

o

STARTING INDEX

;SUBSTRING NOT FOUND, A

;SUBSTRING FOUND, A

A

A, <INDEX)

SUB
RET

LD
RET

;COULD NOT FIND SUBSTRING, RETURN 0 AS INDEX
NOTFND:

FOllND:

STRING:
SUBSTG:
SLEN:
SUBLEN:
INDEX:

; DATA
DS
DS
DS
DS
DS

2
2
1
1
1

;BASE ADDRESS OF STRING
;BASE ADDRESS OF SUBSTRING
;LENGTH OF STRING
;LENGTH OF SUBSTRING
;CURRENT INDEX INTO STRING

SAMPLE EXECUTION:

SC8C:
LD
LD
CALL

HL,STG
DE,SSTG
POS

;HL = BASE ADDRESS OF STRING
;DE = BASE ADDRESS OF SUBSTRING
;FIND POSITION OF SUBSTRING
; SEARCHING IIAAAAAAAAAB II FOR IIAAB II

; RESULTS IN REGISTER A = 8

,JR SC8C

8e FIND THE POSITION OF A SUBSTr<ING (POS) 301

;LOOP FOR ANOTHER TEST

; TEST DATA, CHANGE FOR OTHER VALUES
STG: DB OAH ;LENGTH OF STRING

DB .' AAAAAAAAAB .' ; 32 BYTE MAX LENGTH
SSTG: DB 3H ;LENGTH OF SUBSTRING

DB "AAB .' ; 32 BYTE MAX LENGTH

END

Copy a Substring from a String (COPY) 8D

Copies a substring from a string, given a
starting index and the number of bytes to copy.
The strings are a maximum of 255 bytes long,
and the actual characters are preceded by a byte
containing the length. If the starting index of the
substring is 0 (that is, the substring would start
in the length byte) or is beyond the end of the
string, the substring is given a length of 0 and
the Carry flag is set to 1. If the substring would
exceed its maximum length or would extend
beyond the end of the string, then only the
maximum number or the available number of
characters (up to the end of the string) is placed
in the substring, and the Carry flag is set to I. If
the substring can be formed as specified, the
Carry flag is cleared.

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 21 * NUMBER OF
BYTES COPIED plus 237 cycles overhead. NUM BER
OF BYTES COPIED is the number specified if no
problems occur, or the number available, or the maxi
mum length of the substring if copying would extend
beyond either the string or the substring. If, for
example, NUMBER OF BYTES COPIED 12 10
(OC I6), the execution time is

21 * 12 + 237 = 252 + 237 = 489 cycles

Program Size: 73 bytes

Data Memory Required: Two bytes anywhere in
RAM for the maximum length of the substring
(address MAX LEN) and an error flag (address
CPYERR)

Special Cases:

I. If the number of bytes to copy is 0, the program
assigns the substring a length of 0 and clears the Carry
flag, indicating no errors.

Entry Conditions

Base address of substring in DE
Base address of string in HL
Number of bytes to copy in B

302

Procedure: The program exits immediately if
the number of bytes to copy, the maximum
length of the substring, or the starting index is O.
It also exits immediately if the starting index
exceeds the length of the string. If none of these
conditions holds, the program checks if the
number of bytes to copy exceeds either the
maximum length ofthe substring or the number
of characters available in the string. If either is
exceeded, the program reduces the number of
bytes to copy appropriately. It then copies the
proper number of bytes from the string to the
substring. The program clears the Carry flag if
the substring can be formed as specified and sets
the Carry flag if it cannot.

2. If the maximum length of the substring is 0, the
program assigns the substring a length of 0 and sets
the Carry flag to I, indicating an error.

3. If the starting index of the substring is 0, the
program assigns the substring a length of 0 and sets
the Carry flag to 1, indicating an error.

4. If the source string does not even reach the speci
fied starting index, the program assigns the substring
a length of 0 and sets the Carry flag to I, indicating an
error.

5. If the substring would extend beyond the end of
the source string, the program places all the available
characters in the substring and sets the Carry flag to
I, indicating an error. The available characters are
the ones from the starting index to the end of the
string.

6. If the substring would exceed its specified maxi
mum length, the program places only the specified
maximum number of characters in the substring. It
sets the Carry flag to I, indicating an error.

Starting index to copy from in C
Maximum length of substring in A

8D COpy A SUBSTRING FROM A STRING (COPY) 303

Exit Conditions

Substring contains characters copied from string.
If the starting index is 0, the maximum length of
the substring is 0, or the starting index is beyond
the length of the string, the substring will have a
length of°and the Carry flag will be set to 1. If

Examples

the substring would extend beyond the end of
the string or would exceed its specified maximum
length, only the available characters from the
string (up to the maximum length of the substring)
are copied into the substring; the Carry flag is set
in this case also. Ifno problems occur in forming
the substring, the Carry flag is cleared.

I. Data: String = IO'LET Y I = R7 + X4' 3. Data:
(10 16 = 16 10 is the length of the string)

Maximum length of substring = 2
Number of bytes to copy = 2
Starting index = 5

Result: Substring = 02'Y I' (2 is the length of the Result:
substring)

Two bytes from the string were copied,
starting at character #5 (that is, characters
5 and 6)

Carry 0, since no problems occurred in
forming the substring.

2. Data: String = OE'8657 POWELL ST'
(OE I6 = 14 10 is the length of the string)

Maximum length of substring = 10 16 16 10
Number of bytes to copy = 00 16 = 13 10
Starting index 6

Result: Substring = 09'POWELL ST' (09 is the
length of the substring)

Carry = I, since there were not enough
characters available in the string to provide
the specified number of bytes to copy.

String= 16'9414 HEGENBERGER DRIVE'
(16 16 = 22 10 is the length of the string)

Maximum length of substring = 10 16 = 16 10
Number of bytes to copy = 1116 = 17 10
Starting index = 6

Substring = IO'HEGENBERGER DRIV'
(10 16 = 16 10 is the length of the substring)

Carry = I, since the number of bytes to copy
exceeded the maximum length of the sub
string.

Title
Name:

COpy a substring from a string
COpy

Register B
Register C

304 STRING MANIPULATION

Purpose:

Entry:

Exit:

COpy a substring from a string given a starting
index and the number of bytes

Register pair HL = Address of source string
Register pair DE = Address of destination string;
Register A Maximum length of destination

string
Number of bytes to copy
Starting index into source string
Index of 1 is first character of
string

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

Destination string := The substring from the
string.
if no errors then

CARRY := 0
else

begin
the following conditions cause an
error and the CARRY flag = 1.
if (index = 0) or (maxlen = 0) or

(index> length(source») then
the destination string will have a zero
length.

if (index + count - 1) > length(source)
then

the destination string becomes everything
from index to the end of source string.

END;

Registers used: AF,BC,DE,HL

Time:

Size:

Approximately (21 * count) cycles plus 237
cycles overhead.

Program 73 bytes
Data 2 bytes

;LENGTH OF DESTINATION STRING = ZERO
;ASSUME NO ERRORS

COPY:
;SAVE MAXIMUM LENGTH OF DESTINATION STRING
LD (MAXLEN),A ;SAVE MAXIMUM LENGTH

;INITIALIZE LENGTH OF DESTINATION STRING AND ERROR FLAG
SUB A
LD (DE), A
LD (CPYERR),A

;IF NUMBER OF BYTES TO COpy IS 0, EXIT WITH NO ERRORS
OR B ;TEST NUMBER OF BYTES TO COpy

3D COpy A SUBSTRING FROM A STRING (COPY) 305

Z ;EXIT WITH NO ERRORS
; CARRY = 0

;IF MAXIMUM LENGTH IS 0, TAKE ERROR EXIT
LD A, (MAXLEN) ;TEST MAXIMUM LENGTH
OR A
JR Z,EREXIT ;ERROR EXIT IF MAX LENGTH IS 0

RET

;IF STARTING INDEX IS ZERO, TAKE ERROR EXIT
LD A,C ;TEST STARTING INDEX
OR A
JR Z,EREXIT ;ERROR EXIT IF INDEX IS 0

;IF STARTING INDEX IS GREATER THAN LENGTH OF SOURCE
; STRING, TAKE ERROR EXIT
LD A,(HL) ;GET LENGTH OF SOURCE STRING
CP C ;COMPARE TO STARTING INDEX
RET C ;ERROR EXIT IF LENGTH LESS THAN INDEX

; CARRY = 1

;CHECK IF COPY AREA FITS IN SOURCE STRING
; OTHERWISE, COpy ONLY TO END OF STRING
;COPY AREA FITS IF STARTING INDEX + NUMBER OF
; CHARACTERS TO COPY - 1 IS LESS THAN OR EQUAL TO
; LENGTH OF SOURCE STRING
;NOTE THAT STRINGS ARE NEVER MORE THAN 255 BYTES LONG
LD A,C ;FORM STARTING INDEX + COPY LENGTH
ADD A,B
JR C,RECALC ;JUMP IF SUM> 255
DEC A
CP (HL)
JR C,CNT10K ;JUMP IF MORE THAN ENOUGH TO COPY
JR Z,CNT10K ;JUMP IF EXACTLY ENOUGH

;CALLER ASKED FOR TOO MANY CHARACTERS. RETURN EVERYTHING
; BETWEEN INDEX AND END OF SOURCE STRING.
; SET COUNT := LENGTH(SOURCE) - INDEX + 1;

RECALC:
LD A,OFFH ; INDICATE TRUNCATION OF COUNT
LD (CPYERR),A
LD A, (HL) ;COUNT = LENGTH - INDEX + 1
SUB C
INC A
LD B,A ;CHANGE NUMBER OF BYTES

;CHECK IF COUNT LESS THAN OR EQUAL TO MAXIMUM LENGTH OF
DESTINATION STRING. IF NOT, SET COUNT TO MAXIMUM LENGTH

IF COUNT > MAXLEN THEN
COUNT := MAXLEN

CNTI0K:
LD
CP
JR
LD
LD

A, (MAXLEN)
B
NC,CNT20K
B,A
A,OFFH

;IS MAX LENGTH LARGE ENOUGH?

JUMP IF IT IS
ELSE LIMIT COPY TO MAXLEN
INDICATE STRING OVERFLOW

306 STRING MANIPULATION

LD (CPYERR),A

;MOVE SUBSTRING TO DESTINATION STRING

;CHECK FOR COpy ERROR
LD A, (CPYERR)

CNT20K:

OKEXIT:

LD
OR
,JR
LD
ADD
LD
LD
INC

LDIR

OR
RET

A,B
A
Z,EREXIT
B,O
HL,BC
(DE),A
C,A
DE

A
Z

;TEST NUMBER OF BYTES TO COPY

;ERROR EXIT IF NO BYTES TO COPY
;START COPYING AT STARTING INDEX

;SET LENGTH OF DESTINATION STRING
;RESTORE NUMBER OF BYTES
;MOVE DESTINATION ADDRESS PAST
; LENGTH BYTE
;COPY SUBSTRING

;TEST FOR ERRORS

;RETURN WITH C = 0 IF NO ERRORS

EREXIT:
;ERROR EXIT

SCF
RET

;SET CARRY TO INDICATE AN ERROR

;DATA SECTION
MAXLEN: DS 1
CPYERR: DS 1

SAMPLE EXECUTION:

;MAXIMUM LENGTH OF DESTINATION STRING
;COPY ERROR FLAG

SC8D:
LD HL,SSTG ;SOURCE STRING
LD DE, DSTG ;DESTINATION STRING
LD A, (IDX)
LD C,A ; STARTING INDEX FOR COPYING
LD A, (CNT)
LD B,A ;NUMBER OF BYTES TO COpy
LD A, (MXLEN) ;MAXIMUM LENGTH OF SUBSTRING
CALL COpy ;COPY SUBSTRING

;COPYING 3 CHARACTERS STARTING AT
; INDEX 4 FROM "12.345E+10" GIVES "345"

,JR SC8D ;LOOP FOR MORE TESTING

; DATA SECTION
IDX: DB 4 ; STARTING INDEX FOR COPYING
CNT: DB 3 ;NUMBER OF CHARACTERS TO COPY

MXLEN: DB
SSTG: DB

DB
DSTG: DB

DB

END

20H
OAH
-'12.345E+I0
o

8D COpy A SUBSTRING FROM A STr<ING (COpy) 307

;MAXIMUM LENGTH OF DESTINATION STRING
;LENGTH OF STRING

-' ;32 BYTE MAX LENGTH
;LENGTH OF SUBSTRING

, ;32 BYTE MAX LENGTH

Delete a Substring from a String (DELETE) 8E

Deletes a substring from a string, given a start
ing index and a length. The string is a maximum
of 255 bytes long, and the actual characters are
preceded by a byte containing the length. The
Carry flag is cleared if the deletion can be per
formed as specified. The Carry flag is set if the
starting index is 0 or beyond the length of the
string; the string is left unchanged in either case.
If the deletion extends beyond the end of the
string, the Carry flag is set to I and only the
characters from the starting index to the end of
the string are deleted.

Procedure: The program exits immediately if
either the starting index or the number of bytes

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 21 * NUMBER OF
BYTES MOVED DOWN + 224 cycles, where NUM
BER OF BYTES MOVED DOWN is zero if the string
can be truncated and is STRING LENGTH
STARTING INDEX - NUMBER OF BYTES TO
DELETE + I if the string must be compacted. That
is, it takes extra time when the deletion creates a
"hole"in the string that must be filled by compaction.

Examples

I. STRING LENGTH 2016 (32 10)

STARTING INDEX = 19 16 (25 10)

NUMBER OF BYTES TO DELETE = 08
Since there are exactly eight bytes left in the string

starting at index 19 16, all the routine must do is trun
cate (that is, cut off the end of the string). This takes

21 * 0+ 224 = 224 cycles

2. STRING LENGTH = 4016 (64 10)

STARTING INDEX = 19 16 (25 10)

NUMBER OF BYTES TO DELETE = 08

Entry Conditions

Base address of string in HL
Number of bytes to delete in B
Starting index to delete from in C

308

to delete is O. It also exits if the starting index is
beyond the length of the string. If none of these
conditions holds, the program checks to see if the
string extends beyond the area to be deleted. If it
does not, the program simply truncates the string
by setting the new length to the starting index
minus I. If it does, the program compacts the
resulting string by moving the bytes above the
deleted area down. The program then determines
the new string's length and exits with the Carry
cleared if the specified number of bytes were
deleted or with the Carry set to I if any errors
occurred.

Since there are 2016 (32 10) bytes above the truncated
area, the routine must move them down eight posi
tions to fill the "hole." Thus N UMBER OF BYTES
MOVED DOWN = 32 10 and the execution time is

21 * 32 + 224 = 672 + 224 = 896 cycles

Program Size: 58 bytes

Data Memory Required: One byte anywhere in
RAM for an error flag (address DELERR)

Special Cases:

I. If the number of bytes to delete is 0, the
program exits with the Carry flag cleared (no errors)
and the string unchanged.

2. If the string does not even extend to the specified
starting index, the program exits with the Carry flag
set to I (indicating an error) and the string unchanged.

3. If the number of bytes to delete exceeds the
number available, the program deletes all bytes from
the starting index to the end of the string and exits
with the Carry flag set to I (indicating an error).

Exit Conditions

Substring deleted from string. If no errors occur,
the Carry flag is cleared. If the starting index is 0
or beyond the length of the string, the Carry flag

BE DELETE A SUBSTf<ING FROM A STRING 309

is set and the string is unchanged. If the number
of bytes to delete would go beyond the end of the
string, the Carry flag is set and the characters
from the starting index to the end of the string
are deleted.

Examples

1. Data: String = 26'SALES FOR MARCH AND 2. Data:
APRIL OF THIS YEAR'
(2616 = 3810 is the length of the string)

Number of bytes to delete = OA I6 = 10 10
Starting index to delete from = 10 16 = 1610

Result: String= IC 'SALES FOR MARCH OFTHIS Result:
YEAR' (IC I6 = 28 10 is the length of the
string with ten bytes deleted starting with
the 16th character-the deleted material is
'AND APRIL ')

Carry= 0, since no problems occurred in the
deletion.

String = 28'THE PRICE IS $3.00 ($2.00
BEFORE JUNE I)' (28 16 = 40 10 is the
length of the string)

Number of bytes to delete = 3016 = 48 10
Starting index to delete from = 13 16 = 19 10

String = 12'THE PRICE IS $3.00' (12 16 =
18 10 is the length of the string with all
remaining bytes deleted)

Carry = I, since there were not as many bytes
left in the string as were supposed to be
deleted.

Title:
Name:

Purpose:

Entry:

Exit:

Delete a substring from a string
Delete

Delete a substring from a string given a
starting index and a length

Register pair HL = Base address of string
Register B = Number of bytes to delete
Register C = Starting index into the string.

An index of 1 is the first character

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

Substring deleted.
if no errors then

CARRY := 0
else

310 STRING MANIPUlATION

begin
the following conditions cause an
error with CARRY = 1.
if (index = 0) or (index> length(string»

then do not change string
if count is too large then

delete only the characters from
index to end of string

end;

Registers used: AF,BC,DE,HL

Time:

Size:

Approximately 21 * (LENGTH(STRG)-INDEX-COUNT+l)
plus 224 cycles overhead

Program 58 bytes
Data 1 bytes

;GET LENGTH
;IS INDEX WITHIN STRING?
;NO, TAKE ERROR EXIT

DELETE:
;INITIALIZE ERROR INDICATOR (DELERR) TO 0
SUB A
LD (DELERR),A ;ASSUME NO ERRORS

;CHECK IF COUNT AND INDEX ARE BOTH NON-ZERO
OR B ;TEST NUMBER OF BYTES TO DELETE
RET Z ;RETURN WITH CARRY = 0 (NO ERRORS) IF

; 0 BYTES TO DELETE
LD A,C ;TEST STARTING INDEX
OR A
SCF ;CARRY = 1
RET Z ;ERROR EXIT (CARRY 1) IF

; STARTING INDEX 0

;CHECK IF STARTING INDEX WITHIN STRING
; ERROR EXIT IF NOT
LD A,(HL)
CP C
RET C

;BE SURE ENOUGH CHARACTERS ARE AVAILABLE
; IF NOT, DELETE ONLY TO END OF STRING
; IF INDEX + NUMBER OF CHARACTERS - 1 > LENGTH(STRING) THEN

NUMBER OF CHARACTERS := LENGTH(STRING) - INDEX + 1
LD A,C ;GET INDEX
ADD A,B ;ADD NUMBER OF CHARACTERS TO DELETE
JR C,TRUNC ;TRUNCATE IF SUM> 255
LD E,A ;SAVE SUM AS STARTING INDEX FOR MOVE
DEC A "
CP (HL) ;COMPARE TO LENGTH
JR C,CNTOK ;JUMP IF ENOUGH CHARACTERS AVAILABLE
JR Z,TRUNC ;TRUNCATE BUT NO ERRORS (EXACTLY ENOUGH

; CHARACTERS)
LD A,OFFH ; INDICATE ERROR - NOT ENOUGH CHARACTERS
LD (DELERR),A ; AVAILABLE FOR DELETION

8E DELETE A SUBSTRING FROM A STRING 311

;TRUNCATE STRING - NO COMPACTING NECESSARY
; STRING LENGTH = INDEX - 1

;DELETE SUBSTRING BY COMPACTING
; MOVE ALL CHARACTERS ABOVE DELETED AREA DOWN
;NEW LENGTH = OLD LENGTH ~ NUMBER OF BYTES TO DELETE

TRUNC:

CNTOK:

LD
DEC
LD
LD
RRA
RET

LD
LD
SUB
LD

A,C
A
(HL), A
A, (DELERR)

A, (HL)
D,A
B
(HL), A

;STRING LENGTH = INDEX - 1

;CARRY = 0 IF NO ERRORS
;EXIT

;SAVE OLD LENGTH
;SET NEW LENGTH

; SOURCE = BASE + I NDE X+ NUMBER
OF BYTES TO DELETE

;HL SOURCE (ABOVE DELETED AREA)
;DE = DESTINATION
;BC = NUMBER OF CHARACTERS TO MOVE

;CALCULATE NUMBER OF CHARACTERS TO MOVE
; NUMBER = STRING LENGTH - (INDEX + NUMBER OF BYTES) + 1
LD A,D ;GET OLD LENGTH
SUB E ;SUBTRACT INDEX + NUMBER OF BYTES
INC A ;A = NUMBER OF CHARACTERS TO MOVE

;CALCULATE SOURCE AND DESTINATION ADDRESSES FOR MOVE
;SOURCE = BASE + INDEX + NUMBER OF BYTES TO DELETE
;DESTINATION = BASE + INDEX
PUSH HL ;SAVE STRING ADDRESS
LD B,O ;DESTINATION = BASE + INDEX
ADD HL,BC
EX (SP), HL
LD D,O
ADD HL,DE
POP DE
LD C,A

LDIR

; GOOD EXIT
OKEXIT:

OR A
RET

;DATA
DELERR: DS 1

SAMPLE EXECUTION:

;COMPACT STRING BY MOVING DOWN

;CLEAR CARRY, NO ERRORS

;DELETE ERROR FLAG

seSE:
LD HL,SSTG ;HL BASE ADDRESS OF STRING

312 STRING MANIPULATION

LD
LD
LD
LD
CALL

JR

A, (IDX)
C,A
A, (CNT)
B,A
DELETE

SC8E

;C = STARTINO INDEX FOR DELETION

;B = NUMBER OF CHARACTERS TO DELETE
;DELETE CHARACTERS
;DELETINO 4 CHARACTERS STARTING AT INDEX 1
; FROM ",JOE HANDOVER" LEAVES "HANDOVER"

;LOOP FOR ANOTHER TEST

IDX:
CNT:
SSTO:

;DATA SECTION
DB 1
DB 4
DB 12
DB ~,JOE HANDOVER~

END

;STARTING INDEX FOR DELETION
;NUMBER OF CHARACTERS TO DELETE
;LENOTH OF STRING

Insert a Substring into a String (INSERT) 8F

Inserts a substring into a string, given a start
ing index. The string and substring are both a
maximum of 255 bytes long, and the actual
characters are preceded by a byte containing the
length. The Carry flag is cleared if the insertion
can be accomplished with no problems. The
Carry flag is set if the starting index is°or beyond
the length of the string. In the second case, the
substring is concatenated to the end of the string.
The Carry flag is also set if the string with the
insertion will exceed a specified maximum length.
In that case, the program inserts only enough of
the substring to give the string its maximum
length.

Procedure: The program exits immediately if
the starting index or the length of the substring
is 0. If neither is 0, the program checks to see if
the insertion will produce a string longer than

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 21 * NUMBER
OF BYTES MOVED+ 21 * NUMBER OF BYTES
INSERTED+ 290. NUMBER OF BYTES MOVED
is the number of bytes that must be moved to
create space for the insertion. If the starting index is
beyond the end of the string, NUMBER OF BYTES
MOVED is°since the substring is simply concatenated
to the string. Otherwise, it is STRING LENGTH
STARTING INDEX + 1, since the bytes at or above
the starting index must be moved. NUMBER OF
BYTES INSERTED is the length of the substring if
no truncation occurs. It is the maximum length ofthe
string minus its current length if inserting the substring
produces a string longer than the maximum.

Examples

1. STRING LENGTH = 2016 (32 10)

STARTING INDEX = 19 16 (25 10)

MAXIMUM LENGTH = 3016 (48 10)

SUBSTRING LENGTH = 06
We want to insert a substring six bytes long, start··

ing at the 25th character. Since eight bytes must be

the specified maximum length. If this is the case,
the program truncates the substring. The program
then checks to see if the starting index is within
the string. If it is not, the program simply con
catenates the substring by moving it to the
memory locations immediately after the end of
the string. If the starting index is within the
string, the program must first make room for
the insertion by moving the remaining characters
up in memory. This move must start at the high
est address to avoid writing over any data. Final
ly, the program can move the substring into the
open area. The program then determines the new
string length and exits with the Carry flag set
appropriately (to°if no problems occurred and
to I if the starting index was 0, if the substring
had to be truncated, or if the starting index was
beyond the length of the string).

moved up (NUMBER OF BYTES MOVED = 32
25 + 1) and six bytes must be inserted, the execution
time is approximately

21 *8+ 21* 6+ 290= 168+ 126+ 290= 584 cycles

2. STRING LENGTH = 2016 (32 10)

STARTING INDEX = 19 16 (25 10)

MAXIMUM LENGTH = 24 16 (36 10)

SUBSTRING LENGTH = 06

Unlike Example 1, here we can insert only four
bytes of the substring without exceeding the maximum
length of the string. Thus, NUMBER OF BYTES
MOVED= 8 and NUMBER OF BYTES INSERTED
= 4. The execution time is approximately

21 * 8 + 21 *4+ 290= 168 + 84+ 290= 542 cycles

Program Size: 90 bytes

Data Memory Required: One byte anywhere in
RAM for an error flag (address INSERR).

Special Cases:

1. If the length of the substring (the insertion) is 0,
the program exits with the Carry flag cleared (no
errors) and the string unchanged.

313

314 STRING MANIPULATION

2. If the starting index for the insertion is °(that
is, the insertion would start in the length byte), the
program exits with the Carry flag set to I (indicating
an error) and the string unchanged.

3. If the string with the substring inserted exceeds
the specified maximum length, the program inserts
only enough characters to reach the maximum length.
The Carry flag is set to I to indicate that the insertion
has been truncated.

Entry Conditions

Base address of substring in DE
Base address of string in HL
Maximum length of string in B
Starting index at which to insert the

substring in C

Examples

4. If the starting index of the insertion is beyond
the end of the string, the program concatenates the
insertion at the end of the string and indicates an
error by setting the Carry flag to I.

5. If the original length of the string exceeds its
specified maximum length, the program exits with
the Carry flag set to I (indicating an error) and the
string unchanged.

Exit Conditions

Substring inserted into string. Ifno errors occur,
the Carry flag is cleared. If the starting index or
the length of the substring is 0, the Carry flag is
set and the string is not changed. If the starting
index is beyond the length of the string, the Carry
flag is set and the substring is concatenated to the
end of the string. If the string with the substring
inserted would exceed the specified maximum
length, the Carry flag is set and only those char
acters from the substring which bring the string
to maximum length are inserted.

I. Data: String = OA'JOHN SMITH' (OA I6 = 1010 is 2. Data:
the length of the string)

Substring = 08'WILLIAM' (08 is the length
of the substring)

Maximum length of string = 14 16 = 2010
Starting index = 06

Result: String = 12'JOHN WILLIAM SMITH' Result:
(12 16 = 18 10 is the length of the string
with the substring inserted)

Carry = 0, since no problems occurred in the
insertion.

String = OA'JOHN SMITH' (OA I6 = IO lO is
the length of the string)

Substring = OC'ROCKEFELLER' (OC I6 =
12 10 is the length of the substring)

Maximum length of string = 1416 = 20 10
Starting index = 06

String= 14'JOHN ROCKEFELLESMITH'
(14 16 = 2010 is the length of the string with
as much of the substring inserted as the
maximum length would allow)

Carry = I, since some of the substring could
not be inserted without exceeding the maxi
mum length of the string.

Title:
Name:

Purpose:

Entry:

Exit:

8F INSERT A SUBSTRING INTO A STRING (INSERT) 315

Insert a substring into a string
Insert

Insert a substring into a string given a
starting index

Register pair HL Address of string
Register pair DE Address clf substring to

insert
Register B Maximum length clf string
Register C Starting index to insert the

substring

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

Substring inserted into string.
if no errors then

CARRY = 0
else

begin
the following conditions cause the
CARRY flag to be set.
if index = 0 then

do not insert the substring
if length(strg) > maximum length then

do not insert the substring
if index> length(strg) then

concatenate substg onto the end of the
source string

if length(strg)+length(substring) > maxlen
then insert only enough of the substring
to reach maximum length

end;

Registers used: AF,BC,DE,HL

Time:

Size:

Approxi'mately
21 * (LENGTH(STRG) - INDEX + 1) +
21 * (LENGTH(SUBSTG» +
290 cycles overhead

Program 90 bytes
Data 1 byte

INSERT:
;INITIALIZE ERROR FLAG

316 STRING MANIPULATION

SUB
LD

A
(INSERR), A

;ERROR FLAG o (NO ERRORS.>

;GET SUBSTRING AND STRING LENGTHS
; IF LENGTH(SUBSTG) = 0 THEN EXIT BUT NO ERROR
LD A,(DE) ;TEST LENGTH OF SUBSTRING
OR A
RET Z ;EXIT IF SUBSTRING EMPTY

; CARRY = 0 (NO ERRORS)

;IF STARTING INDEX IS ZERO, TAKE ERROR EXIT
IDXO:

LD
OR
SCF
RET

A,C
A

Z

;TEST STARTING INDEX

;ASSUME AN ERROR
;RETURN WITH ERROR IF INDEX o

;CHECK WHETHER INSERTION WILL MAKE STRING TOO LONG
; IF IT WILL, TRUNCATE SUBSTRING AND SET
; TRUNCATION FLAG.
; INSERTION TOO LONG IF STRING LENGTH + SUBSTRING LENGTH
; EXCEEDS MAXIMUM LENGTH. REMEMBER, STRINGS CANNOT BE
; MORE THAN 255 BYTES LONG

;SUBSTRING DOES NOT FIT, SO TRUNCATE IT
; SET ERROR FLAG TO INDICATE TRUNCATION
; LENGTH THAT FITS = MAXIMUM LENGTH - STRING LENGTH

;CHECK IF INDEX WITHIN STRING. IF NOT, CONCATENATE
; SUBSTRING ONTO END OF STRING

CHKLEN:

TRUNC:

IDXLEN:

LD
ADD
....R
CP
LD
....R
....R

LD
LD
LD
SUB
RET
SCF
RET

LD
LD
CP
....R

A,(DE)
A, (HL)
C,TRUNC
B
A, (DE)
C,IDXLEN
Z,IDXLEN

A,OFFH
<I NSERR) , A
A,B
(HL)
C

Z

B,A
A, (HL)
C
NC,LENOK

;TOTAL =STRING + SUBSTRING

;TRUNCATE SUBSTRING IF NEW LENGTH> 255
;COMPARE TO MAXIMUM LENGTH OF STRING
;A = LENGTH OF SUBSTRING
;UMP IF TOTAL < MAX LENGTH
; OR EQUAL

; INDICATE SUBSTRING TRUNCATED

;LENGTH = MAX - STRING LENGTH

;RETURN WITH ERROR IF STRING TOO
; LONG INITIALLY OR ALREADY MAX
; LENGTH SO NO ROOM FOR SUBSTRING

;B = LENGTH OF SUBSTRING
;GET STRING LENGTH
;COMPARE TO INDEX
;UMP IF STARTING INDEX WITHIN STRING

; INDEX NOT WITHIN STRING, SO CONCATENATE
; NEW LENGTH OF STRING = OLD LENGTH + SUBSTRING LENGTH
LD C,A ;SAVE CURRENT STRING LENGTH
ADD A,B ;ADD LENGTH OF SUBSTRING

8F INSERT A SUBSTRING INTO A STRING (INSERT) 317

LD (HL) ,A ;SET NEW LENGTH OF STRING

;SET ADDRESSES FOR CONCATENATION
; DE = STRING ADDRESS + LENGTH(STRING) + 1

; HL
EX
LD
INC
ADD
LD
JR
INC

= SUBSTRING
DE,HL
A,C
A
A,E
E,A
NC,IDXLl
D

ADDRESS
;HL
;DE

SUBSTRING ADDRESS
END OF STRING

IDXL1:
LD
LD
JR

A,OFFH
(INSERR), A
MVESUB

;INDICATE INSERTION ERROR

;JUST MOVE, NOTHING TO OPEN UP

;OPEN UP SPACE IN SOURCE STRING FOR SUBSTRING BY MOVING
CHARACTERS FROM END OF SOURCE STRING DOWN TO INDEX, UP BY

; SIZE OF SUBSTRING.
; A = LENGTH(STRING)

LENOK:
PUSH
PUSH

BC
DE

;SAVE LENGTH OF SUBSTRING
;SAVE ADDRESS OF SUBSTRING

;NEW LENGTH OF STRING = OLD LENGTH + SUBSTRING LENGTH
LD E, A ; DE = STRING LENGTH
LD D,O
ADD A,B
LD (HL),A ;STORE NEW LENGTH OF STRING

;CALCULATE NUMBER OF CHARACTERS TO MOVE
; = STRING LENGTH - STARTING INDEX + 1
LD A,E ;GET ORIGINAL LENGTH OF STRING
SUB C
INC A ;A = NUMBER OF CHARACTERS TO MOVE

;CALCULATE ADDRESS OF LAST CHARACTER IN STRING. THIS IS
; SOURCE ADDRESS = STRING ADDRESS + LENGTH(STRING)
ADD HL,DE ;HL POINTS TO LAST CHARACTER IN STRING
LD E,L ;DE ALSO
LD D,H

SOURCE ADDRESS
DESTINATION ADDRESS

= NUMBER OF CHARACTERS TO MOVE

; HL
;DE
;BCC,A

;CALCULATE DESTINATION ADDRESS
; = STRING ~DDRESS + LENGTH(STRING) + LENGTH OF SUBSTRING
;THIS MOVE MUST START AT HIGHEST ADDRESS AND WORK DOWN
; TO AVOID OVERWRITING PART OF THE STRING
LD C,B ;BC = LENGTH OF SUBSTRING
LD B,O
ADD HL,BC
EX DE, HL

LD

318 STRING MANIPULATION

LDDR ;OPEN UP FOR SUBSTRING

;RESTORE REGISTERS
EX DE,HL
INC DE ;DE = ADDRESS TO MOVE STRING TO
POP HL ;HL = ADDRESS OF SUBSTRING
POP BC ;B = LENGTH OF SUBSTRING

;MOVE SUBSTRING INTO OPEN AREA
; HL = ADDRESS OF SUBSTRING
; DE = ADDRESS TO MOVE SUBSTRING TO
; C = LENGTH OF SUBSTRING

MVESlIB:
INC HL ; INCREMENT PAST LENGTH BYTE OF SUBSTRING
LD C,B ;BC = LENGTH OF SUBSTRING TO MOVE
LD B,O
LDIR ;MOVE SUBSTRING INTO OPEN AREA

LD A, <INSERR) ;GET ERROR FLAG
RRA ;IF INSERR <> 0 THEN CARRY = 1

; TO INDICATE AN ERROR
RET

; DATA SECTION
INSERR: DS 1 ;FLAG USED TO INDICATE ERROR

SAMPLE EXECUTION:

SC8F:
LD HL,STG ;HL = BASE ADDRESS OF STRING
LD DE,SSTG ;DE = BASE ADDRESS OF SUBSTRING
LD A, (lDX)
LD C,A ;C = STARTING INDEX FOR INSERTION
LD A, (MXLEN)
LD B,A ;B = MAXIMUM LENGTH OF STRING
CALL INSERT ; INSERT SUBSTRING

;RESULT OF INSERTING ~-~ INTO ~123456~ AT
; INDEX 1 IS ~-123456~

,JR SC8F ;LOOP FOR ANOTHER TEST

; DATA SECTION
IDX: DB 1 ; STARTING INDEX FOR INSERTION
MXLEN: DB 20H ;MAXIMUM LENGTH OF DESTINATION
STG: DB 06H ; LENGTH OF STRING

DB "123456 .' ;32 BYTE MAX LENGTH
SSTG: DB 1 ;LENGTH OF SUBSTRING

DB .'- .' ;32 BYTE MAX LENGTH

END

a-Bit Array Summation (ASUM8) 9A

Adds the elements of an array, producing a
16-bit sum. The array consists of up to 255 byte
length elements.

Procedure: The program clears the sum initial
ly. It then adds elements one at a time to the less
significant byte of the sum, starting at the base
address. Whenever an addition produces a carry,
the program increments the more significant
byte of the sum.

Entry Conditions

Base address of array in HL
Size of array in bytes in B

Example

I. Data: Array consists of
F7 16 5A I6
23 16 16 16
31 16 CB I6
70 16 El 16

Result: Sum = (HL) = 03D7 16

Registers Used: AF, B, DE, HL

Execution Time: Approximately 38 cycles per byte
length element plus 49 cycles overhead

Program Size: 19 bytes

Data Memory Required: None

Special Case: An array size of 0 causes an imme
diate exit with the sum equal to O.

Exit Conditions

Sum in HL

Title
Name:

Purpose:

a-bit array summation
ASUM8

Sum the elements of an arraYr yielding a 16-bit
result. Maximum size is 255

319

320 ARRAY OPERATIONS

Enh"y:

Exit:

Register pair HL = Base address of array
Register B = Size of array in bytes

Register pair HL = Sum

Registers used: AFpBpDEpHL

Time:

Size:

Approximately 38 cycles per element plus
49 cycles overhead

Program 19 bytes

ASUM8:
; TEST ARRAY LENGTH
;EXIT WITH SUM = 0 IF NOTHING IN ARRAY
EX DEpHL ;SAVE BASE ADDRESS OF ARRAY
LD HLpO ;INITIALIZE SUM TO 0

; CHECK FOR LENGTH OF ZERO
LD ApB ; TEST ARRAY LENGTH
OR A
RET Z ;EXIT WITH SUM = 0 IF LENGTH 0

;INITIALIZE ARRAY POINTER p SUM
EX DEpHL ;RESTORE BASE ADDRESS OF ARRAY

; HIGH BYTE OF SUM = 0
SUB A ;A = LOW BYTE OF SUM = 0

;D = HIGH BYTE OF SUM

;ADD BYTE-LENGTH ELEMENTS TO SUM ONE AT A TIME
; INCREMENT HIGH BYTE OF SUM WHENEVER A CARRY OCCURS

SUMLP:
ADD Ap(HL)
....R NC,DECCNT
INC D

DECCNT:
INC HL
D,-INZ SUMLP

EXIT:
LD L,A
LD H,D
RET

;ADD NEXT BYTE
;UMP IF NO CARRY
; ELSE INCREMENT HIGH BYTE OF SUM

;HL SUM

SAMPLE EXECUTION

SC9A:
LD
LD

HLpBUF
Ap(BUFSZ)

;HL = BASE ADDRESS OF BUFFER

9A 8-BIT ARRAY SUMMATION (ASUM8) 321

LD
CALL

B,A
ASUM8

;B = SIZE OF BUFFER IN BYTES

;SUM OF TEST DATA IS 07FS HEX,
; HL = 07FSH

...IR SC9A

;SlIM = 07F8 (2040 DECIMAL)

BUF: DB OOH
DB 11H
DB 22H
DB 33H
DB 44H
DB 55H
DB 66H
DB 77H
DB 88H
DB 99H
DB OAAH
DB OBBH
DB OCCH
DB ODDH
DB OEEH
DB OFFH

END

;TEST DATA, CHANGE FOR OTHER VALUES
SIZE EQU 010H ;SIZE OF BUFFER IN BYTES
BUFSZ: DB SIZE ;SIZE OF BUFFER IN BYTES

; BlIFFER
;DECIMAL ELEMENTS ARE 0,17,34,51,68
; 85,102,119,135,153,170,187,204
; 221,238,255

16-Bit Array Summation (ASUM16) 98

Adds the elements of an array, producing a
24-bit sum. The array consists of up to 255 word
length (l6-bit) elements. The elements are ar
ranged in the usual Z80 format with the less
significant bytes first.

Procedure: The program clears the sum initial
ly. It then adds elements to the less significant
bytes of the sum one at a time, starting at the
base address. Whenever an addition produces a
carry, the program increments the most signifi
cant byte of the sum.

Entry Conditions

Base address of array in HL
Size of array in l6-bit words in B

Example

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 68 cycles per 16
bit element plus 49 cycles overhead

Program Size: 25 bytes

Data Memory ReqUired: None

Special Case: An array size of 0 causes an imme
diate exit with the sum equal to O.

Exit Conditions

Most significant byte of sum in E
Middle and least significant bytes of sum in HL

I. Data:

Result:

Array (in 16-bit words) consists of
F7Al 16 5A3616
239B 16 166C 16
31D5 16 CBF5 16
70F2 16 EI07 16

Sum = 03DBAl 16
(E) = 03 16
(HL) = DBAI 16

322

Title
Name:

16-bit array summation
ASUM16

98 16-81T ARRAY SUMMATION (ASUM16) 323

Purpose: Sum the elements of an array, yielding a 24-bit
result. Maximum size is 255 16-bit elements

Entry: Register pair HL = Base address of array
Register B = Size of array in words

Exit: Register A
Register- H =
Register L

High byte of sum
Middle byte of sum
Low byte of sum

Registers used: AF,BC,DE,HL

Time: Approximately 68 cycles per element plus
49 cycles overhead

Size: Program 25 bytes

ASUM16:
; TEST ARRAY LENGTH
;EXIT WITH SUM = 0 IF NOTHING IN ARRAY
EX DE,HL ;SAVE BASE ADDRESS OF ARRAY
LD HL,(I ~INITIALIZE SUM TO (I

; CHECK FOR ARRAY LENGTH OF ZERO
LD A,B ;TEST ARRAY LENGTH
OR A
RET Z ;EXIT WITH SUM = (I IF LENGTH (I

~INITIALIZE ARRAY
EX DE,HL

LD C,E

POINTER, SUM
;BASE ADDRESS BACK TO HL
~ LOW, MIDDLE BYTES OF SUM
~C HIGH BYTE OF SUM = 0
;D = MIDDLE BYTE OF SUM
;E = LOW BYTE OF SUM

o

;ADD HIGH BYTE OF ELEMENT TO
; MIDDLE BYTE OF SUM

;JUMP IF NO CARRY
; ELSE INCREMENT HIGH BYTE OF SUM

;HL MIDDLE AND LOW BYTES OF SUM

;ADD WORD-LENGTH ELEMENTS TO SUM ONE AT A TIME
; INCREMENT HIGH BYTE OF SUM WHENEVER A CARRY OCCURS

;ADD LOW BYTES OF ELEMENT AND SUM
SUMLP:

LD A,E
ADD A, (HL)
LD E,A
INC HL
LD A,D
ADC A, (HL)
LD D,A
,JR NC,DECCNT
INC C

DECCNT:
INC HL
D..JNZ SUMLP

EXIT:
EX DE,HL

324 ARRAY OPERATIONS

LD
RET

A,C ;A HIGH BYTE OF SUM

SAMPLE EXECUTION

SC9B:
LD
LD
LD
CALL

HL,BUF
A, (BUFSZ)
B,A
ASUM16

;HL = BASE ADDRESS OF BUFFER

;B = SIZE OF BUFFER IN WORDS

;SUM OF TEST DATA IS 31FF8 HEX,
; REGISTER PAIR HL = 1FF8H
; REGISTER A = 3

JR SC9B

; SUM 31FF8 (204792 DECIMAL)

BUF: DW OOOH
DW 111H
DW 222H
DW 333H
DW 444H
DW 555H
DW 666H
OW 777H
DW 888H
DW 999H
DW OAAAH
DW OBBBH
DW OCCCH
DW OODDDH
DW OEEEEH
DW OFFFFH

END

;TEST DATA, CHANGE FOR OTHER VALUES
SIZE EQU 010H ;SIZE OF BUFFER IN WORDS
BUFSZ: DB SIZE ;SIZE OF BUFFER IN WORDS

; BUFFER
;DECIMAL ELEMENTS ARE 0,273,546,819,1092
; 1365,1638,1911,2184,2457,2730,3003,3276
; 56797,61166,65535

Find Maximum Byte-Length
Element (MAXELM) 9C

Finds the maximum element in an array. The
array consists of up to 255 unsigned byte-length
elements.

Procedure: The program exits immediatel:/
(setting Carry to I) if the array has no elements.
Otherwise, the program assumes that the ele
ment at the base address is the maximum. It then
proceeds through the array, comparing the sup
posed maximum with each element and retaining
the larger value and its address. Finally, the
program clears Carry to indicate a valid result.

Entry Conditions

Base address of array in HL
Size of array in bytes in B

Example

I. Data: Array (in bytes) consists of
35 16 44 16
A6 16 59 16
02 16 7A 16
IB I6 CF16

Result: The largest unsigned element is element #2
(02 16)

(A) = largest element (02 16)

(HL) = BASE + 2 (lowest address contain
ing 02 16)

Carry flag = 0, indicating that array size is
non-zero and the result is valid.

Registers Used: AF, B, DE, HL

Execution Time: Approximately 36 to 58 cycles per
element plus 35 cycles overhead. If, on the average,
the program must replace the maximum in half of
the iterations, the execution time is approximately
94 * ARRAY SIZE/2 + 35 cycles.
Program Size: 19 bytes
Data Memory Required: None

Special Cases:
I. An array size of 0 causes an immediate exit

with the Carry flag set to I to indicate an invalid
result.

2. If the largest unsigned value occurs more than
once, the program returns with the lowest possible
address. That is, it returns with the address closest to
the base address that contains the maximum value.

Exit Conditions

Largest unsigned element in A
Address of largest unsigned element in HL
Carry = 0 if result is valid; I if size of array is 0

and result is meaningless.

325

326 ARRAY OPERATIONS

Tit Ie

Name:

Purpose:

Ent ry:

Exit:

Find maximum byte-length element

MAXELM

Given the base address and size of an array,
find the largest element

Register pair HL = Base address of array
Register B = Size of array in bytes

If size of array not zero then
Carry flag = 0
Register A = Largest element
Register pair HL = Address of that element
if there are duplicate values of the largest
element, register pair HL has the address
nearest to the base address

else
Carry flag = 1

Registers used: AF,B,DE,HL

Time:

Size:

Approximately 36 to 58 cycles per element
plus 35 cycles overhead

Program 19 bytes

MAXELM:
;EXIT WITH CARRY SET IF NO ELEMENTS IN ARRAY
LD A,B ;TEST ARRAY SIZE
OR A
SCF ;SET CARRY TO INDICATE ERROR EXIT
RET Z ;RETURN IF NO ELEMENTS

;REPLACE PREVIOUS GUESS AT LARGEST ELEMENT WITH
; CURRENT ELEMENT. FIRST TIME THROUGH, TAKE FIRST
; ELEMENT AS GUESS AT LARGEST

MAXLP: LD A, (HL) ;LARGEST = CURRENT ELEMENT
LD E,L ;SAVE ADDRESS OF LARGEST
LD D,H

MAXLP1 :

;COMPARE CURRENT ELEMENT TO LARGEST
;KEEP LOOKING UNLESS CURRENT ELEMENT IS LARGER

DEC B
.JR Z, EXIT
INC HL

9C FIND MAXIMUM ELEMENT (MAXELM) 327

EXIT:

CP
....R
....R

OR
EX
RET

(HL)
NC,MAXLPl
MAXLP

A
DE,HL

;COMPARE CURRENT ELEMENT, LARGEST
;CONTINUE UNLESS CURRENT ELEMENT LARGER
;ELSE CHANGE LARGEST

;CLEAR CARRY TO INDICATE NO ERRORS
;HL = ADDRESS OF LARGEST ELEMENT

SAMPLE EXECUTION:

SC9C:
LD
LD
CALL

HL,ARY
B,SZARY
MAXEU1

;HL = BASE ADDRESS OF ARRAY
;13 = SIZE OF ARRAY IN BYTES

;RESULT FOR TEST DATA IS
; A = FF HEX (MAXIMUM), HL = ADDRESS OF
; FF IN ARY

....R SC9C

SZARY EQU 10H
ARY: DB 8

DB 7
DB 6
DB 5
DB 4
DB 3
DB 2
DB 1
DB OFFH
DB OFEH
DB OFDH
DB OFCH
DB OFBH
DB OFAH
DB OF9H
DB OF8H

END

;LOOP FOR MORE TESTING

;SIZE OF ARRAY IN BYTES

Find Minimum Byte-Length
Element (MINELM) 98

Finds the minimum element in an array. The
array consists of up to 255 unsigned byte-length
elements.

Procedure: The program exits immediately
(setting Carry to I) if the array has no elements.
Otherwise, the program assumes that the ele
ment at the base address is the minimum. It then
proceeds through the array, comparing the sup
posed minimum to each element and retaining
the smaller value and its address. Finally, the
program clears Carry to indicate a valid result.

Entry Conditions

Base address of array in HL
Size of array in bytes in B

Example

I. Data: Array (in bytes) consists of
35 16 44 16
A6 16 59 16
02 16 7A I6
IB I6 CF I6

Result: The smallest unsigned element is element #3
(I B16)

(A) = smallest element (I B16)

(HL) = BASE + 3 (lowest address contain
ing IB I6)

Carry flag = 0, indicating that array size is
non-zero and the result is valid.

328

Registers Used: AF, B, DE, HL

Execution Time: Approximately 36 to 65 cycles per
element plus 35 cycles overhead. If, on the average,
the program must replace the minimum in half of
the iterations, the execution time is approximately
101 * ARRAY SIZE/2 +35 cycles.

Program Size: 21 bytes

Data Memory Required: None

Special Cases:
I. An array size of 0 causes an immediate exit

with the Carry flag set to I to indicate an invalid
result.

2. If the smallest unsigned value occurs more
than once, the program returns with the lowest pos
sible address. That is, it returns with the address
closest to the base address that contains the min
imum value.

Exit Conditions

Smallest unsigned element in A
Address of smallest unsigned element in HL
Carry = 0 if result is valid; I if size of array is 0

and result is meaningless.

Tit Ie

Name:

Purpose:

Entry:

Exit:

90 FIND MINIMUM BYTE-LENGTH ELEMENT (MINELM) 329

Find minimum byte-length element

MINELM

Given the base address and size of an array,
find the smallest element

Register pair HL = Base address of array
Register B = Size of array in bytes

If size of array not zero then
Carry flag = 0
Register A = Smallest element
Register pair HL = Address of that element
if there are duplicate values of the smallest;
element, HL will have the address
nearest to the base address

else
Carry flag = 1

Registers used: AF,B,DE,HL

WITH CARRY SET IF NO ELEMENTS IN ARRAY
A,B ;TEST ARRAY SIZE
A

MINELM:

Time:

Size:

;EXIT
LD
OR
SCF
RET Z

Approximately 36 to 65 cycles per element
plus 35 cycles overhead

Program 21 bytes

;SET CARRY TO INDICATE AN ERROR EXIT
;RETURN IF NO ELEMENTS

;REPLACE PREVIOUS GUESS AT SMALLEST ELEMENT WITH
; CURRENT ELEMENT. FIRST TIME THROUGH, TAKE FIRST
; ELEMENT AS GUESS AT SMALLEST

MINLP: LD A, (HL) ;SMALLEST = CURRENT ELEMENT
LD E,L ;SAVE ADDRESS OF SMALLEST
LD D,H

MINLPl :

;COMPARE CURRENT ELEMENT TO SMALLEST
;KEEP LOOKING UNLESS CURRENT ELEMENT IS SMALLER

DEC B
..JR Z,EXIT

330 ARRAY OPERATIONS

EXIT:

INC
CP
JR
JR
•.JR

OR
EX
RET

HL
(HL)
C~MINLPl

Z,MINLPl
MINLP

A
DE,HL

;COMPARE CURRENT ELEMENT, SMALLEST
;CONTINUE IF CURRENT ELEMENT LARGER
; OR SAME
;ELSE CHANGE SMALLEST

;CLEAR CARRY TO INDICATE NO ERRORS
;HL = ADDRESS OF SMALLEST ELEMENT

SAMPLE EXECUTION:

SC9D:
LD
LD
CALL

HL,ARY
B,SZARY
MINELM

;HL = BASE ADDRESS OF ARRAY
;B = SIZE OF ARRAY IN BYTES

;RESULT FOR TEST DATA IS
; A = 1 HEX (MINIMUM), HL = ADDRESS OF
; 1 IN ARY

,JR SC9D

SZARY EQU lOH
ARY: DB 8

DB 7
DB 6
DB 5
DB 4
DB 3
DB 2
DB 1
DB OFFH
DB OFEH
DB OFDH
DB OFCH
DB OFBH
DB OFAH
DB OF9H
DB OF8H

END

;LOOP FOR MORE TESTING

;SIZE OF ARRAY IN BYTES

Binary Search (BINSCH)

Searches an array of unsigned byte-length
elements for a particular value. The elements are
assumed to be arranged in increasing order.
Clears Carry if it finds the value and sets Carry
to 1 if it does not. Returns the address of the
value if found. The size of the array is specified
and is a maximum of 255 bytes.

Procedure: The program performs a binary
search, repeatedly comparing the value with the
middle remaining element. After each compari
son, the program discards the part of the array
that cannot contain the value (because of the
ordering). The program retains upper and lower
bounds for the remaining part. If the value is
larger than the middle element, the program
discards the middle and everything below it. The
new lower bound is the address of the middle
element plus 1. If the value is smaller than the
middle element, the program discards the mid
dle and everything above it. The new upper
bound is the address of the middle element
minus 1. The program exits if it finds a match or
if there is nothing left to search.

For example, assume that the array is

0116,0216,0516,0716,0916,0916,0016' 10 16,

2E 16, 37 16, 5016, 7E 16, A 116, B416, 07 16, EO l6

and the value to be found is 0016. The proce
dure works as follows.

In the first iteration, the lower bound is the
base address and the upper bound is the address
of the last element. So the result is

LOWER BOUND = BASE
UPPER BOUND= BASE+ SIZE- 1= BASE+ OF I6

GUESS = (UPPER BOUND + LOWER BOUND)/2
(the result is truncated) = BASE + 7

(GUESS) = ARRAY(7) 1016 = 1610

Since the value (0016) is less than ARRAY(7),
the elements beyond #6 can be discarded. So the
result is

9E

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 114 cycles per
iteration plus 53 cycles overhead. A binary search
requires on the order ofIog2N iterations, where N is
the number of elements in the array.

Program Size: 37 bytes

Data Memory Required: None

Special Case: A size of0 causes an immediate exit
with the Carry flag set to I. That is, the array con
tains no elements and the value surely cannot be
found.

LOWER BOUND = BASE
UPPER BOUND = GUESS - I = BASE + 6
GUESS = (UPPER BOUND + LOWER BOUND)/2

= BASE+ 3
(GUESS) = ARRAY(3) = 07

Since the value (0016) is greater than ARRAY(3),
the elements below #4 can be discarded. So the
result is

LOWER BOUND = GUESS + I BASE + 4

UPPER BOUND = BASE + 6
GUESS = (UPPER BOUND + LOWER BOUND)/2

BASE + 5
(GUESS) ARRAY(5) 09

Since the value (0016) is greater than ARRAY(5),
the elements below #6 can be discarded. So the
result is

LOWER BOUND = GUESS + I = BASE + 6
UPPER BOUND = BASE + 6
GUESS = (UPPER BOUND + LOWER BOUND)/2

= 06

(GUESS) = ARRAY(6) = 0016

Since the value (0016) is equal to ARRAY(6),
the element has been found. If, on the other
hand, the value were OEI6, the new lower bound
would be BASE+ 7 and there would be nothing
left to search.

331

332 ARRAY OPERATIONS

Entry Conditions

Value to find in A
Size of the array in bytes in C
Base address of array (address of smallest

unsigned element) in HL

Examples

Exit Conditions

Carry 0 if the value is found; I if it is not
found.

If the value is found, (HL) = its address.

Length of array = 10 16 2. Oata:
Elements of array are 01 16 , 02 16, 05 16, 07 16, 0916,0916,0016'
10 16, 2E 16, 37 16, 50 16, 7E 16, A1 16, B4 16, 07 16, EO l6 Result:

Value to find = 9B I6

Carry = I, indicating value not found

I. Oata:

Result:

Value to find = 00 16

Carry = 0, indicating value found
(Hi.) = BASE + 6 (address containing 00 16)

Title
Name:

Purpose:

Entry:

Exit:

Binary search
BINSCH

Search an ordered array of unsigned bytes
with a maximum size of 255 elements

Register pair HL = Base address of array
Register C Size of array
Register A = Byte to find

If the value is found then
Carry flag = 0
Register pair HL = Address of value

ELSE
Carry flag = 1

Registers used: AF,BC,DE,HL

9E BINARY SEARCH (BINSCH) 333

Time: Approximately 114 cycles for each iteration of
the search loop plus 53 cycles overhead

A binary search takes on the order of log
base 2 of N searches, where N is the number of
elements in the array.

Size: Program 37 bytes

;SET CARRY IN CASE SIZE IS 0
;RETURN INDICATING VALUE NOT FOUND
; IF SIZE IS 0

Z

;EXIT WITH CARRY SET IF NO ELEMENTS IN ARRAY
INC C ; TEST ARRAY SI ZE
DEC C
SCF
RET

BINSCH:

; INITIALIZE LOWER BOUND, UPPER BOUND OF SEARCH AREA
;LOWER BOUND (DE) = BASE ADDRESS
;UPPER BOUND (HL) = ADDRESS OF LAST ELEMENT
; = BASE ADDRESS + SIZE - 1
LD E,L ;LOWER BOUND = BASE ADDRESS
LD D,H
LD B,O ;EXTEND SIZE TO 16 BITS
ADD HL,BC ;UPPER BOUND = BASE + SIZE - 1
DEC HL

;SAVE VALUE BEING SOUGHT
LD C,A ;SAVE VALUE

; ITERATION OF BINARY SEARCH
;1) COMPARE VALUE TO MIDDLE ELEMENT
;2) IF THEY ARE NOT EQUAL, DISCARD HALF THAT

CANNOT POSSIBLY CONTAIN VALUE (BECAUSE OF ORDERING)
;3) CONTINUE IF THERE IS ANYTHING LEFT TO SEARCH

LOOP:
;HL = UPPER BOUND
;DE = LOWER BOUND
;C = VALUE TO FIND
;FIND MIDDLE ELEMENT
;MIDDLE = (UPPER BOUND
PUSH HL
ADD HL,DE
RR H
RR L
LD A,(HL)

+ LOWER BOUND) / 2
;SAYE UPPER BOUND ON STACK
;ADD UPPER BOUND AND LOWER BOUND
;DIVIDE 17-BIT SUM BY 2

;GET MIDDLE ELEMENT

;COMPARE MIDDLE ELEMENT AND VALUE
CP C ;COMPARE MIDDLE ELEMENT AND VALUE
JR NC,TOOLRG ;JUMP IF VALUE SAME OR LARGER

;MIDDLE ELEMENT LESS THAN VALUE

334 ARRAY OPERATIONS

; SO CHANGE LOWER BOUND TO MIDDLE + 1
; SINCE EVERYTHING BELOW MIDDLE IS EVEN SMALLER
EX DE,HL ;LOWER BOUND = MIDDLE + 1
INC DE
POP HL ;RESTORE UPPER BOUND
JR CONT

;MIDDLE ELEMENT GREATER THAN OR EQUAL TO VALUE
; SO CHANGE UPPER BOUND TO MIDDLE - 1
; SINCE EVERYTHING ABOVE MIDDLE IS EVEN LARGER
;EXIT WITH CARRY CLEAR IF VALUE FOUND

;CONTINUE IF THERE IS ANYTHING LEFT TO BE SEARCHED
;NOTHING LEFT WHEN LOWER BOUND ABOVE UPPER BOUND

TOOLRG:

CONT:

INC
INC
RET

DEC

LD
CP
LD
SBC
JR

SP
SP
Z

HL

A,L
E
A,H
A,D
NC,LOOP

;DISCARD OLD UPPER BOUND FROM STACK

;IF MIDDLE ELEMENT SAME AS VALUE
; RETURN WITH CARRY CLEAR
; AND HL = ADDRESS CONTAINING VALUE
;UPPER BOUND = MIDDLE - 1

;FORM UPPER BOUND - LOWER BOUND
; MUST SAVE BOTH, SO USE 8-BIT SUBTRACT

;CONTINUE IF ANYTHING LEFT TO SEARCH

;NOTHING LEFT TO SEARCH SO COULD NOT FIND VALUE
;RETURN WITH CARRY SET (MUST BE OR JR NC WOULD HAVE BRANCHED)
RET

SAMPLE EXECUTION

SC9E:
; SEARCH
LD
LD
LD
LD
CALL

; SEARCH
LD
LD
LD
LD
CALL

FOR A VALUE
HL,BF
A, (BFSZ)
C,A
A,7
BINSCH

FOR A VALUE
HL,BF
A, (BFSZ)
C,A
A,O
BINSCH

THAT IS IN THE ARRAY
;HL = BASE ADDRESS OF ARRAY

;C = ARRAY SIZE IN BYTES
;A = VALUE TO FIND
; SEARCH
;CARRY FLAG = 0 (VALUE FOUND)
;HL = BF + 4 (ADDRESS OF 7 IN ARRAY)

THAT IS NOT IN THE ARRAY
;HL = BASE ADDRESS OF ARRAY

;C = ARRAY SIZE IN BYTES
;A = VALUE TO FIND
; SEARCH
;CARRY FLAG = 1 (VALUE NOT FOUND)

....R SC9E

; DATA
SIZE EQU 010H
BFSZ: DB SIZE
BF: DB 1

DB 2
DB 4
DB 5
DB 7
DB 9
DB 10
DB 11
DB 23
DB 50
DB 81
DB 123
DB 191
DB 199
DB 250
DB 255

END

9E BINARY SEARCH (BINSCH) 335

;LOOP FOR MORE TESTS

,SIZE OF ARRAY IN BYTES
,SIZE OF ARRAY IN BYTES
; BUFFER

Quicksort (QSORT)

Arranges an array of unsigned word-length
elements into ascending order using a quicksort
algorithm. Each iteration selects an element and
divides the array into two parts, one consisting
of elements larger than the selected element and
the other consisting of elements smaller than the
selected element. Elements equal to the selected
element may end up in either part. The parts are
then sorted recursively in the same way. The
algorithm continues until all parts contain either
no elements or only one element. An alternative
is to stop recursion when a part contains few
enough elements (say, less than 20) to make a
bubble sort practical.

The parameters are the array's base address,
the address of its last element, and the lowest
available stack address. The array can thus
occupy all available memory, as long as there is
room for the stack. Since the procedures that
obtain the selected element, compare elements,
move forward and b,!-ckward in the array, and
swap elements are all subroutines, they could be
changed readily to handle other types ofelements.

Ideally, quicksort should divide the array in
half during each iteration. How closely the
procedure approaches this ideal depends on
how well the selected element is chosen. Since
this element serves as a midpoint or pivot, the
best choice would be the central value (or
median). Of course, the true median is unknown.
A simple but reasonable approximation is to
select the median of the first, middle, and last
elements.

Procedure: The program first deals with the
entire array. It selects the median of the current
first, last, and middle elements to use in dividing
the array. It moves that element to the first
position and divides the array into two parts or
partitions. It then operates recursively on the

336

9F

Registers Used: AF, BC, DE, HL

Execution Time: Approximately N * log2N loops
through PARTLP plus 2 * N + I overhead calls
to SORT. Each iteration of PARTLP takes approx
imately 200 cycles and each overhead call to SORT
takes approximately .300 cycles. Thus, the total
execution time is on the order of 200 *N * log2N+300
* (2 * N + I).

Program Size: 206 bytes

Data Memory Required: 8 bytes anywhere in
RAM for pointers to the first and last elements of a
partition (2 bytes starting at addresses FIRST and
LAST, respectively), a pointer to the bottom of the
stack (2 bytes starting at address STK BTM), and the
original value of the stack pointer (2 bytes starting at
address OLDSP).

Special Case: If the stack overflows (i.e., comes
too close to its boundary), the program exits with
the Carry flag set to I.

parts, dividing them further into parts and stop
ping when a part contains no elements or only
one element. Since each recursion places six
bytes on the stack, the program must guard
against stack overflow by checking whether the
stack has grown to within a small buffer of its
lowest available address.

Note that the selected element always ends up
in the correct position after an iteration. There
fore, it need not be included in either partition.

The rules for choosing the middle element are
as follows, assuming that the first element is # 1:

1. If the array has an odd number of ele
ments, take the one in the center. For example,
if the array has 11 elements, take #6.

2. If the array has an even number of ele
ments and its base address is even, take the
element on the lower (base address) side of the
center. For example, if the array starts in 030016
and has 12 elements, take #6.

3. If the array has an even number of ele
ments and its base address is odd, take the
element on the upper side of the center. For
example, if the array starts in 030116 and has 12
elements, take #7.

Entry Conditions

Base address of array in HL
Address of last word of array in DE
Lowest available stack address in BC

Example

I. Data: Length (size) of array = OC l6
Elements = 2B16, 57 16 , 1016 , 26 16,

22 16 , 2E16 , OC 16,44 16 ,
17 16 , 4B 16 , 37 16, 27 16

Result: The result of the first iteration is:

Selected element = median of the first
(#1 = 2B I6), middle (#6 = 2E I6), and last
(# 12 = 27 16) elements. The selected ele
ment is therefore #1 (2B I6), and no swap
ping is necessary since it is already in the
first position.

At the end of the iteration, the array is

2716,1716,1016,2616'
22 16 , OC I6 , 2B 16, 44 16 ,
2E 16 , 4B 16 , 37 16 , 57 16 -

The first partition, consisting of elements
less than 2B 16, is 2716,1716,1016,2616,2216'
and OC I6.

The second partition, consisting of ele
ments greater than 2B 16, is 44 16, 2E 16 , 4B 16 ,
37 16 , and 57 16 ,

Note that the selected element (2B I6) is

9F QUICKSORT (QSORT) 337

Exit Conditions

Array sorted into ascending order, considering
the elements as unsigned words. Thus, the
smallest unsigned word ends up stored starting
at the base address. Carry = 0 if the stack did
not overflow and the result is proper. Carry = 1
if the stack overflowed and the final array is
not sorted.

now in the correct position and need not be
included in either partition.

The first partition may now be sorted recur
sively in the same way:

Selected element = median of the first
(#1 = 27 16), middle (#3 = 1016), and last
(#7 = OC I6) elements. Here, #4 is the
median and must be exchanged initially
with #1.

The final order of the elements in the first
partition is

The first partition of the first partition
(consisting of elements less than 10 16) is
OC 16' 17 16 , This will be referred to as the (l, I)
partition.

The second partition of the first partitior.
(consisting of elements greater than 1016) is
26 16, 22 16 , and 27 16 ,

As in the first iteration, the selected ele
ment (l0 16) is in the correct position and
need not be considered further.

338 ARRAY OPERATIONS

The (1,1) partition may now be sorted
recursively as follows:

Selected element = median of the first
(#1 = OC I6), middle (#1 OC I6), and last
(#2 = 17 16) elements. Thus the selected ele
ment is the first element (# I OC I6) and no
initial swap is necessary.

The final order is obviously the same as the
initial order, and the two resulting partitions
contain 0 and I elements, respectively. Thus
the next iteration concludes the recursion,
and the other partitions are sorted by the

REFERENCES

same method. Obviously, quicksort's over
head is large when the number of elements is
small. This is why one might use a bubble
sort once quicksort has created small enough
partitions.

Note that the example array does not con
tain any identical elements. During an itera
tion, elements that are the same as the
selected element are never moved. Thus they
may end up in either partition. Strictly speak
ing, then, the two partitions consist of ele
ments "less than or possibly equal to the
selected element" and elements "greater than
or possibly equal to the selected element."

Augenstein, M.J., and Tenenbaum, A.M. Data Structures and PL/ I Programming.
Englewood Cliffs, N.J.: Prentice-Hall, 1979, pp. 460-71. There is also a Pascal version
of this book entitled Data Structures Using Pascal (Englewood Cliffs, N.J.: Prentice
Hall, 1982).

Bowles, K.L. Microcomputer Problem Solving Using Pascal. New York: Springer-Verlag,
1977, Chapter 15.

Knuth, D.E. The Art of Computer Programming, Volume 3: Searching and Sort
ing. Reading, Mass.: Addison-Wesley, 1973, pp. 114-23.

Title
Name:

Purpose:

Entry:

Quicksort
QSORT

Arrange an array of unsigned words into
••cendin~ order using quicksort, with.
maximum size of 32,767 words

Register pair HL = Address of first word in the
at-ray

9F QUICKSORT (QSORT) 339

Register pair DE = Address of last word in the
array

Register pair BC = Lowest available stack
address

Exit: If the stack did not overflow then
array is sorted into ascending order.
Carry flag 0

Else
Carry flag 1

Registers used: AF,BC,DE,HL

Time: The timing is highly data-dependent but the
quicksort algorithm takes approximately
N * log (N) loops through PARTLP. There will be
2 * N+1 calls to Sort. The number of recursions
will probably be a fraction of N but if all
data is the same, the recursion could be up to
N. Therefore the amount of stack space should
be maximized. NOTE: Each recursion level takes
6 bytes of stack space.

In the above discussion N is the number of
array elements.

For example, sorting a 16,384-word array took
about 27 seconds and 1200 bytes of stack space
on a 6 MHz 180.

Size: Program 206 bytes
Data 8 bytes

;RESTORE BASE ADDRESS

HL,2
HL,SP
(OLDSP),HL
HL

LD
ADD
LD
POP

;WATCH FOR STACK OVERFLOW
;CALCULATE A THRESHOLD TO WARN OF OVERFLOW
; (10 BYTES FROM THE END OF THE STACK)
;SAVE THIS THRESHOLD FOR LATER COMPARISONS
;ALSO SAVE THE POSITION OF THIS ROUTINE/S RETURN ADDRESS
; IN THE EVENT WE MUST ABORT BECAUSE OF STACK OVERFLOW
PUSH HL ;SAVE BASE ADDRESS OF ARRAY
LD HL,10 ;ADD SMALL BUFFER (10 BYTES) TO
ADD HL,BC ; LOWEST STACK ADDRESS
LD (STKBTM),HL ;SAVE SUM AS BOTTOM OF STACK

; FOR FIGURING WHEN TO ABORT
;SAVE POINTER TO RETURN ADDRESS
; IN CASE OF ABORT

QSORT:

;WORK RECURSIVELY THROUGH THE QUICKSORT ALGORITHM AS
; FOLLOWS:

;IF DIFFERENCE POSITIVE, RETURN
; THIS PART IS SORTED

;CALCULATE FIRST - LAST
; MUST KEEP BOTH, SO USE a-BIT SUBTRACT

WHEN FIRST >= LAST
ADDRESS OF FIRST
ADDRESS OF LAST

A,E
L
A,D
A,H
NC

LD C,O

,USE MEDIAN TO FIND A
;MOVE CENTRAL ELEMENT
CALL MEDIAN

340 ARRAY OPERATIONS

1. CHECK IF THE PARTITION CONTAINS 0 OR 1 ELEMENT.
MOVE UP A RECURSION LEVEL IF IT DOES.

2. USE MEDIAN TO OBTAIN A REASONABLE CENTRAL VALUE
FOR DIVIDING THE CURRENT PARTITION INTO TWO
PARTS.

3. MOVE THROUGH ARRAY SWAPPING ELEMENTS THAT
ARE OUT OF ORDER UNTIL ALL ELEMENTS BELOW THE
CENTRAL VALUE ARE AHEAD OF ALL ELEMENTS ABOVE
THE CENTRAL VALUE. SUBROUTINE COMPARE
COMPARES ELEMENTS, SWAP EXCHANGES ELEMENTS,
PREV MOVES UPPER BOUNDARY DOWN ONE ELEMENT,
AND NEXT MOVES LOWER BOUNDARY UP ONE ELEMENT.

4. CHECK IF THE STACK IS ABOUT TO OVERFLOW. IF IT
IS, ABORT AND EXIT.

5. ESTABLISH THE BOUNDARIES FOR THE FIRST PARTITION
(CONSISTING OF ELEMENTS LESS THAN THE CENTRAL VALUE)
AND SORT IT RECURSIVELY.

6. ESTABLISH THE BOUNDARIES FOR THE SECOND PARTITION
(CONSISTING OF ELEMENTS GREATER THAN THE CENTRAL
VALUE) AND SORT IT RECURSIVELY.

SORT:
;SAVE BASE ADDRESS AND FINAL ADDRESS IN LOCAL STORAGE
LD (FIRST),HL ;SAVE FIRST IN LOCAL AREA
EX DE,HL
LD (LAST),HL ;SAVE LAST IN LOCAL AREA

;CHECK IF PARTITION CONTAINS 0 OR 1 ELEMENTS
, IT DOES IF FIRST IS EITHER LARGER THAN (0)
; OR EQUAL TO (1) LAST.

PARTION:
,STOP
;DE =
;HL =
LD
SUB
LD
SBC
RET

REASONABLE CENTRAL (PIVOT) ELEMENT
TO FIRST POSITION

;SELECT CENTRAL ELEMENT, MOVE IT
; TO FIRST POSITION
;BIT 0 OF REGISTER C = DIRECTION
; IF IT~S 0 THEN DIRECTION IS UP
; ELSE DIRECTION IS DOWN

REORDER ARRAY BY COMPARING OTHER ELEMENTS WITH
CENTRAL ELEMENT. START BY COMPARING THAT ELEMENT WITH
LAST ELEMENT. EACH TIME WE FIND AN ELEMENT THAT
BELONGS IN THE FIRST PART (THAT IS, IT IS LESS THAN
THE CENTRAL ELEMENT), SWAP IT INTO THE FIRST PART IF IT

9F QUICKSORT (QSORT) 341

;EXIT WHEN EVERYTHING EXAMINED

UNEXAMINED PART OF THE PARTITION
IS NOTHING LEFT IN IT

;LOWER BOUNDARY - UPPER BOUNDARY
; MUST KEEP BOTH, SO USE 8-BIT SUBTRACT

IS NOT ALREADY THERE AND MOVE THE BOUNDARY OF THE
FIRST PART DOWN ONE ELEMENT. SIMILARLY, EACH TIME WE
FIND AN ELEMENT THAT BELONGS IN THE SECOND PART (THAT
IS, IT IS GREATER THAN THE CENTRAL ELEMENT), SWAP IT INTO
THE SECOND PART IF IT IS NOT ALREADY THERE AND MOVE

; THE BOUNDARY OF THE SECOND PART UP ONE ELEMENT.
; ULTIMATELY, THE BOUNDARIES COME TOGETHER
; AND THE DIVISION OF THE ARRAY IS THEN COMPLETE
;NOTE THAT ELEMENTS EQUAL TO THE CENTRAL ELEMENT ARE NEVER
; SWAPPED AND SO MAY END UP IN EITHER PART

;LOOP SORTING
; UNTIL THERE
LD A,E
SUB L
LD A,D
SBC A,H
JR NC,DONE

PARTLP:

;COMPARE NEXT 2 ELEMENTS. IF OUT OF ORDER, SWAP THEM
;AND CHANGE DIRECTION OF SEARCH
; IF FIRST > LAST THEN SWAP
CALL COMPARE ;COMPARE ELEMENTS
JR C,OK ;JUMP IF ALREADY IN ORDER
JR Z,OK ; OF IF ELEMENTS EQUAL

;ELEMENTS OUT OF ORDER.
CALL SWAP
INC C

SWAP THEM
;SWAP ELEMENTS
;CHANGE DIRECTION

;REDUCE SIZE OF UNEXAMINED AREA
;IF NEW ELEMENT LESS THAN CENTRAL ELEMENT, MOVE
; TOP BOUNDARY DOWN
JIF NEW ELEMENT GREATER THAN CENTRAL ELEMENT, MOVE
; BOTTOM BOUNDARY UP
;IF ELEMENTS EQUAL, CONTINUE IN LATEST DIRECTION

OK:
BIT O,C ;BIT 0 OF e TELLS WHICH WAY TO GO
JR Z,UP ; JUMP IF MOVING UP
EX DE,HL
CALL NEXT ; ELSE MOVE TOP BOUNDARY DOWN BY
EX DE,HL ; ONE ELEMENT
JR PARTLP

UP:
CALL PREV ; MOVE BOTTOM BOUNDARY UP BY

; ONE ELEMENT
JR PARTLP

;THIS PARTITION HAS NOW BEEN SUBDIVIDED INTO TWO
PARTITIONS. ONE STARTS AT THE TOP AND ENDS JUST
ABOVE THE CENTRAL ELEMENT. THE OTHER STARTS
JUST BELOW THE CENTRAL ELEMENT AND CONTINUES
TO THE BOTTOM. THE CENTRAL ELEMENT IS NOW IN
ITS PROPER SORTED POSITION AND NEED NOT BE
INCLUDED IN EITHER PARTITION

342 ARRAY OPERATIONS

DONE:
;FIRST CHECK WHETHER STACK MIGHT OVERFLOW
;IF IT IS GETTING TOO CLOSE TO THE BOTTOM, ABORT
; THE PROGRAM AND EXIT
LD HL,(STKBTM) ;CALCULATE STKBTM - SP
OR A ;CLEAR CARRY
SBC HL,SP
JR NC,ABORT ;EXIT IF STACK TOO LARGE

;ESTABLISH BOUNDARIES FOR FIRST (LOWER) PARTITION
;LOWER BOUNDARY IS SAME AS BEFORE
;UPPER BOUNDARY IS ELEMENT JUST BELOW CENTRAL ELEMENT
;THEN RECURSIVELY QUICKSORT FIRST PARTITION
PUSH DE ;SAVE ADDRESS OF CENTRAL ELEMENT
LD HL,(LAST)
PUSH HL ;SAVE ADDRESS OF LAST
EX DE,HL
CALL PREV ;CALCULATE LAST FOR FIRST PART
EX DE,HL
LD HL,(FIRST) ;FIRST IS SAME AS BEFORE
CALL SORT ;QUICKSORT FIRST PART

;ESTABLISH BOUNDARIES FOR SECOND (UPPER) PARTITION
;UPPER BOUNDARY IS SAME AS BEFORE
;LOWER BOUNDARY IS ELEMENT JUST ABOVE CENTRAL ELEMENT
;THEN RECURSIVELY QUICKSORT SECOND PARTITION
POP DE ;LAST IS SAME AS BEFORE
POP HL ;CALCULATE FIRST FOR SECOND PART
CALL NEXT
CALL SORT ;QUICKSORT SECOND PART
OR A ;CARRY = 0 FOR NO ERRORS
RET

;ERROR EXIT - SET CARRY
ABORT: LD SP,(OLDSP) ;TOP OF STACK IS ORIGINAL

; RETURN ADDRESS
SCF ; INDICATE ERROR IN SORT
RET ,RETURN TO ORIGINAL CALLER

;******************************
; ROUTINE: MEDIAN
; PURPOSE: DETERMINE WHICH VALUE IN A PARTITION
; SHOULD BE USED AS THE CENTRAL ELEMENT OR PIVOT
; ENTRY: DE = ADDRESS OF FIRST VALUE
; HL = ADDRESS OF LAST VALUE
;EXIT: DE IS ADDRESS OF CENTRAL ELEMENT
;REGISTERS USED: AF,BC,DE
;*******************************

MEDIAN:
;DETERMINE ADDRESS OF MIDDLE ELEMENT
; MIDDLE : = ALIGNED (FIRST + LAST) DIV 2
LD A,L ADD ADDRESSES OF FIRST, LAST
ADD A,E MUST KEEP BOTH, SO USE 8-BIT
LD C,A ADD INSTEAD OF 16-BIT

LD
ADC
LD
RR
RR
RES
BIT
..JR
INC

A,H
A,D
B,A
B
C
O,C
O,E
Z,MED1
C

9F QUICKSORT (QSORT) 343

,DIVIDE SUM BY 2, BYTE AT A TIME

;CLEAR BIT 0 FOR ALIGNMENT
;ALIGN MIDDLE TO BOUNDARY OF FIRST
; ..JUMP IF BIT 0 OF FIRST IS 0
; ELSE MAKE BIT 0 OF MIDDLE 1

;DETERMINE WHICH OF FIRST, MIDDLE, LAST IS
; MEDIAN (CENTRAL VALUE)
;COMPARE FIRST AND MIDDLE

MED1 :
PUSH
LD
LD
CALL
POP
..JR

HL
L,C
H,B
COMPARE
HL
NC,MIDD1

;SAVE LAST

;COMPARE FIRST AND MIDDLE
;RESTORE LAST
;..JUMP IF FIRST)= MIDDLE

;WE KNOW (MIDDLE) FIRST)
; SO COMPARE MIDDLE AND LAST
PUSH DE ;SAVE FIRST
LD E,C
LD D,B
CALL COMPARE ;COMPARE MIDDLE AND LAST
POP DE ;RESTORE LAST
..JR C,SWAPMF ;JUMP IF LAST)= MIDDLE
JR Z,SWAPMF ; MIDDLE IS MEDIAN

;WE KNOW (MIDDLE)
; SO COMPARE FIRST
CALL COMPARE
RET NC

JR SWAPLF

FIRST) AND (MIDDLE) LAST)
AND LAST

;COMPARE FIRST AND LAST
;RETURN IF LAST)= FIRST
; FIRST IS MEDIAN
;ELSE LAST IS MEDIAN

;WE KNOW (FIRST)= MIDDLE)
; SO COMPARE FIRST AND LAST

MIDD1:
CALL
RET
RET

COMPARE
C
Z

;COMPARE LAST AND FIRST
;RETURN IF LAST)= FIRST
; FIRST IS MEDIAN

;COMPARE MIDDLE AND LAST
;RESTORE FIRST
;JUMP IF LAST) MIDDLE
; LAST IS MEDIAN

;WE KNOW (FIRST)= MIDDLE) AND (FIRST) LAST)
; SO COMPARE MIDDLE AND LAST
PUSH DE ;SAVE FIRST
LD E,C ;DE = MIDDLE
LD D,B
CALL COMPARE
POP DE
JR C,SWAPLF

344 ARRAY OPERATIONS

;MIDDLE IS MEDIAN, SWAP IT WITH FIRST

;LAST IS MEDIAN, SWAP IT WITH FIRST

SWAPMF:

SWAPLF:

PUSH
LD
LD
CALL
POP
RET

CALL
RET

HL
L,C
H,B
SWAP
HL

SWAP

;SAVE LAST
;HL = ADDRESS OF MIDDLE

;SWAP MIDDLE, FIRST
;RESTORE LAST

;SWAP FIRST AND LAST

;*******************************
;ROUTINE: NEXT
; PURPOSE: MAKE HL POINT TO NEXT ELEMENT
; ENTRY: HL = ADDRESS OF CURRENT ELEMENT
;EXIT: HL = ADDRESS OF NEXT ELEMENT
;REGISTERS USED: HL
;*******************************

;*******************************
; ROUTINE: PREV
; PURPOSE: MAKE HL POINT TO PREVIOUS ELEMENT
; ENTRY: HL = ADDRESS OF CURRENT ELEMENT
,EXIT: HL = ADDRESS OF PREVIOUS ELEMENT
;REGISTERS USED: HL
;*******************************

NEXT:

PREV:

INC
INC
RET

DEC
DEC
RET

HL
HL

HL
HL

; INCREMENT TO NEXT ELEMENT

;DECREMENT TO PREVIOUS ELEMENT

;*******************************
; ROUTINE: COMPARE
; PURPOSE: COMPARE DATA ITEMS POINTED TO BY DE AND HL
,ENTRY: DE = ADDRESS OF DATA ELEMENT 1
, HL = ADDRESS OF DATA ELEMENT 2
,EXIT: IF ELEMENT 1 > ELEMENT 2 THEN

C = 0
Z = 0

IF ELEMENT 1 < ELEMENT 2 THEN
C = 1
Z = 0

IF ELEMENT 1 ELEMENT 2 THEN
C = 0
Z = 1

;REGISTERS USED: AF
;********************************

COMPARE:
INC
INC
LO
CP
DEC
DEC
RET
LO
CP
RET

HL
DE
A,(OE)
(HL)
DE
HL
NZ
A, (DE)
(HL)

9F QUICKSORT (QSORT) 345

;POINT TO HIGH BYTES

;COMPARE HIGH BYTES
;POINT TO LOW BYTES

;RETURN IF HIGH BYTES NOT EQUAL
; OTHERWISE, COMPARE LOW BYTES

;********************************
;ROUTINE: SWAP
; PURPOSE: SWAP ELEMENTS POINTED TO BY DE,HL
; ENTRY: DE = ADDRESS OF ELEMENT 1
; HL = ADDRESS OF ELEMENT 2
;EXIT: ELEMENTS SWAPPED
;REGISTERS USED: AF,B
;*********************************

SWAP:
; SWAP LOW BYTES
LD B, (HL)
LD A, (DE)
LD (HL), A
LD A,B
LD (DE),A
INC HL
INC DE

; SWAP HIGH BYTES
LD B, (HL)
LD A, (DE)
LO (HL), A
LD A,B
LD (DE),A
DEC HL
DEC DE
RET

; DATA SECTION
FIRST: DS 2
LAST: DS 2
STKBTM: OS 2
OLDSP: DS 2

;GET ELEMENT 2
;GET ELEMENT 1
;STORE NEW ELEMENT 2

;STORE NEW ELEMENT 1

;GET ELEMENT 2
;GET ELEMENT 1
;STORE NEW ELEMENT 2

;STORE NEW ELEMENT 1

;POINTER TO FIRST ELEMENT OF PART
;POINTER TO LAST ELEMENT OF PART
;THRESHOLD FOR STACK OVERFLOW
;POINTER TO ORIGINAL RETURN ADDRESS

SAMPLE EXECUTION:

346 ARRAY OPERATIONS

;SET UP A STACK AREA
,BC LOWEST AVAILABLE STACK ADDRESS
;HL = ADDRESS OF FIRST ELEMENT OF ARRAY
;DE = ADDRESS OF LAST ELEMENT OF ARRAY

SC9F:
,SORT AN ARRAY BETWEEN BEOBUF (FIRST ELEMENT)
; AND ENDBUF (LAST ELEMENT)
,START STACK AT 5000 HEX AND ALLOW IT TO EXPAND
; AS FAR AS 4FOO HEX
LD SP,5000H
LD BC,4FOOH
LD HL,BEOBUF
LD DE,ENDBUF

CALL QSORT ; SORT
;RESULT FOR TEST DATA IS
; 0,1,2,3, ... ,14,15

JR SC9F ;LOOP FOR MORE TESTS

; OATA SECTION
BEGBUF: OW 15

OW 14
OW 13
OW 12
OW 11
OW 10
OW 9
OW 8
OW 7
OW 6
OW 5
OW 4
OW 3
OW 2
OW 1

ENDBUF: OW 0

END

RAM Test (RAMTST)

Tests a RAM area specified by a base address
and a length in bytes. Writes the values 0, FF 16,
AAI6 (101010102), and 5516 (010101012) into each
byte and checks whether they can be read back
correctly. Places 1 in each bit position of each
byte and checks whether it can be read back
correctly with all other bits cleared. Clears the
Carry flag if all tests run properly. If it finds an
error, it exits immediately, setting the Carry flag
and returning the test value and the address at
which the error occurred.

Procedure: The program performs the single
value checks (with 0, FFI6, AA I6, and 5516) by
first filling the memory area and then comparing
each byte with the specified value. Filling the
entire area first should provide enough delay
between writing and reading to detect a failure
to retain data (perhaps caused by improperly
designed refresh circuitry). The program then
performs the walking bit test, starting with bit 7;

Entry Conditions

Base address of test area in HL
Size of test area in bytes in DE

Example

I. Data: Base address = 038016
Length (size) of area = 020016

9G

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 633 cycles per
byte tested plus 663 cycles overhead

Program Size: 82 bytes

Data Memory Required: None

Special Cases:
I. An area size of 000016 causes an immediate

exit with no memory tested. The Carry nag is
cleared to indicate no errors.

2. Since the routine changes all bytes in the
tested area, using it to test an area that includes
itself will have unpredictable results.

Note that Case I means this routine cannot be
asked to test the entire memory. Such a request
would be meaningless anyway since it would re
quire the routine to test itself.

3. Testing a ROM causes a return with an error
indication after the first occasion on which the test
value differs from the memory's contents.

here it writes the data into memory and attempts
to read it back immediately for a comparison.

Exit Conditions

If an error is found:
Carry = 1
Address containing error in HL
Test value in A

If no error is found:

Carry =°
All bytes in test area contain °

Result: Area tested is the 020016 bytes starting at
address 038016' that is, addresses 038016
through 057F 16. The order of the tests is

347

348 ARRAY OPERATIONS

l. Write and read 0
2. Write and read FFI6
3. Write and read AA I6 (101010102)

4. Write and read 55 16 (01010101 2)

5. Walking bit test, starting with I in
bit 7. That is, start with 100000002
(80 16) and move the lone position
right for each subsequent test of a
byte.

Tit Ie
Name:

RAM test
RAMTST

Purpose: Test a RAM (read/wr it e memc1ry) area
1) Write all o and test
2) Write all FF hex and test
3) Write all AA hex and test
4) Write all 55 hex and test
5) Shift a single 1 through each bit,

whi Ie clearing all other bits

If the program finds an error, it exits
immediately with the Carry flag set and
indicates where the error occurred and
what value it used in the test.

Entry: Register pair HL
Register pair DE

Base address of test area
Size of area in bytes

Exit: If there are no errors then
Carry flag = 0
test area contains 0 in all bytes

else
Carry flag = 1
Register pair HL = Address of error
Register A = Expected value

Registers used: AF,BC,DE.HL

Time:

Size:

Approximately 633 cycles per byte plus
663 cycles overhead

Program 82 bytes

RAMTST:
;EXIT
LD
OR
RET
LD
LD

9G RAM TEST (RAMTST) 349

WITH NO ERRORS IF AREA SIZE IS 0
A,D ;TEST AREA SIZE
E
Z ;EXIT WITH NO ERRORS IF SIZE IS ZERO
B,D ;BC = AREA SIZE
C,E

;FILL MEMORY WITH 0 AND TEST
SUB A
CALL FILCMP
RET C ;EXIT IF ERROR FOUND

; FILL MEMORY WITH FF HEX (ALL 1"S) AND TEST
LD A,OFFH
CALL FILCMP
RET C ;EXIT IF ERROR FOUND

;FILL MEMORY WITH AA HEX (ALTERNATING 1~S AND O~S) AND TEST
LD A,OAAH
CALL FILCMP
RET C ;EXIT IF ERROR FOUND

;FILL MEMORY WITH 55 HEX (ALTERNATING O~S AND 1~S) AND TEST
LD A,55H
CALL FILCMP
RET C ;EXIT IF ERROR FOUND

;PERFORM W~LKING BIT TEST. PLACE A 1 IN BIT 7 AND
; SEE IF IT CAN BE READ BACK. THEN MOVE THE 1 TO
; BITS 6, 5, 4, 3, 2, 1, AND 0 AND SEE IF IT CAN
; BE READ BACK

WLKLP:
LD A,10000000B ;MAKE BIT 7 1, ALL OTHER BITS 0

WLKLP1 :
LD (HL),A ;STORE TEST PATTERN IN MEMORY
CP (HL) ;TRY TO READ IT BACK
SCF ;SET CARRY IN CASE OF ERROR
RET NZ ;RETURN IF ERROR
RRCA ;ROTATE PATTERN TO MOVE 1 RIGHT
CP 10000000B
dR NZ,WLKLP1 ;CONTINUE UNTIL 1 IS BACK IN BIT 7
LD (HL),O ;CLEAR BYTE dUST CHECKED
INC HL
DEC BC ;DECREMENT AND TEST 16-BIT COUNTER
LD A,B
OR C
dR NZ,WLKLP ;CONTINUE UNTIL MEMORY TESTED
RET ;NO ERRORS (NOTE OR C CLEARS CARRY)

;***********************************
; ROUTINE: FILCMP
; PURPOSE: FILL MEMORY WITH A VALUE AND TEST

, THAT IT CAN BE READ BACK

350 ARRAY OPERATIONS

; ENTRY: A = TEST VALUE
HL = BASE ADDRESS

, BC = SIZE OF AREA IN BYTES
;EXIT: IF NO ERRORS THEN

CARRY FLAG IS 0
ELSE

CARRY FLAG IS 1
HL = ADDRESS OF ERROR
DE = BASE ADDRESS
BC = SIZE OF AREA IN BYTES

; A = TEST VALUE
;REGISTERS USED: AF,BC,DE,HL
;************************************

FILCM?:
PUSH
PUSH
LD
LD
DEC
LD
OR
LD
JR

HL
BC
E,A
(HL),A
BC
A,B
C
A,E
Z,COMPARE

;SAVE BASE ADDRESS
;SAVE SIZE OF AREA
;SAVE TEST VALUE
;STORE TEST VALUE IN FIRST BYTE
;REMAINING AREA = SIZE - 1
;CHECK IF ANYTHING IN REMAINING AREA

;RESTORE TEST VALUE
;BRANCH IF AREA WAS ONLY 1 BYTE

;FILL REST OF AREA USING BLOCK MOVE
; EACH ITERATION MOVES TEST VALUE TO NEXT HIGHER ADDRESS
LD D,H ;DESTINATION IS ALWAYS SOURCE + 1
LD E,L
INC DE
LDIR ;FILL MEMORY

;RESTORE SIZE OF AREA
;RESTORE BASE ADDRESS
;SAVE BASE ADDRESS
;SAVE SIZE OF VALUE

BC
HL
HL
BC

;NOW THAT MEMORY HAS BEEN FILLED, TEST TO SEE IF
; EACH BYTE CAN BE READ BACK CORRECTLY

COMPARE:
POP
POP
PUSH
PUSH

;COMPARE MEMORY AND TEST VALUE
CMPLP:

CPI
,-IR NZ, CMPER
JP PE,CMPLP

;NO ERRORS FOUND, SO
POP BC
POP HL
OR A
RET

;JUMP IF NOT EQUAL
;CONTINUE THROUGH ENTIRE AREA
; NOTE CPI CLEARS P/V FLAG IF IT
; DECREMENTS BC TO 0

CLEAR CARRY
;BC = SIZE OF AREA
;HL = BASE ADDRESS
;CLEAR CARRY, INDICATING NO ERRORS

;ERROR EXIT, SET CARRY
;HL = ADDRESS OF ERROR
;A = TEST VALUE

CMPER:
POP
pOP
SCF
RET

BC
DE

9G RAM TEST (r<AMTST) 351

;DE = SIZE OF AREA
;BC = BASE ADDRESS
,SET CARRY, INDICATING AN ERROR

SC9G:

SAMPLE EXECUTION

;TEST RAM FROM 2000 HEX THROUGH 300F HEX
, SIZE OF AREA = 1010 HEX BYTES
LD HL,2000H ;HL = BASE ADDRESS
LD DE,1010H ;DE = NUMBER OF BYTES
CALL RAMTST ;TEST MEMORY

;CARRY FLAG SHOULD BE 0

.JR

END

SC9G ;LOOP FOR MORE TESTING

Jump Table (JTAB)

Transfers control to an address selected from
a table according to an index. The addresses are
stored in the usual Z80 format (less significant
byte first), starting at address JMPTAB. The
size of the table (number of addresses) is a
constant, LENSUB, which must be less than or
equal to 128. If the index is greater than or equal
to LENSUB, the program returns control imme
diately with the Carry flag set to 1.

Procedure: The program first checks if the
index is greater than or equal to the size of the
table (LENSUB). If it is, the program returns
control with the Carry flag set. If it is not, the
program obtains the starting address of the
appropriate subroutine from the table and jumps
to it.

Entry Conditions

Index in A

Example

9H

Registers Used: AF

Execution Time: 117 cycles overhead, besides the
time required to execute the actual subroutine

Program Size: 21 bytes plus 2 * LENSUB bytes for
the table of starting addresses, where LENSUB is the
number of subroutines

Data Memory Required: None

Special Case: Entry with an index greater than or
equal to LENSUB causes an immediate exit with
the Carry flag set to I.

Exit Conditions

If (A) is greater than LENSUB, an immediate
return with Carry = 1. Otherwise, control is
transferred to the appropriate subroutine as if
an indexed call had been performed. The return
address remains at the top of the stack.

I. Data:

Result:

352

LENSUB (size of subroutine table) = 03
Table consists of addresses SUBO, SUBI,

and SUB2.
Index = (A) = 02

Control transferred to address SUB2
(PC = SUB2)

Title
Name:

Purpose:

Entry:

Exit:

9H JUMP TABLE (JTAB) 353

Jump table
JTAB

Given an index, jump to the subrQutine with
that index in a table.

Register A is the subroutine number (0 to
LENSUB-1, the number of subroutines)
LENSUB must be less than or equal to
128.

If the routine number is valid then
execute the routine

else
Carry flag = 1

Registers used: AF

;EXIT WITH CARRY SET IF ROUTINE NUMBER IS INVALID
;THAT IS, IF IT IS TOO LARGE FOR TABLE ()LENSUB - 1)

JTAB:

Time:

Size:

CP
CCF
RET

LENSUB

C

117 cycles plus execution time of subroutine

Program 21 bytes plus size of table (2*LENSUB)

;COMPARE ROUTINE NUMBER, TABLE SIZE
;COMPLEMENT CARRY FOR ERROR INDICATOR
;RETURN IF ROUTINE NUMBER TOO LARGE
; WITH CARRY SET

; INDEX
; LEAVE
; FOR
PUSH
ADD
LD
ADD
LD
LD
ADC
LD

INTO TABLE OF WORD-LENGTH ADDRESSES
REGISTER PAIRS UNCHANGED SO THEY CAN BE USED
PASSING PARAMETERS

HL ;SAVE HL
A,A ;DOUBLE INDEX FOR WORD-LENGTH ENTRIES
HL,JMPTAB ;INDEX INTO TABLE USING a-BIT
A,L ; ADDITION TO AVOID DISTURBING
L,A ; ANOTHER REGISTER PAIR
A,O
A,H
H,A ;ACCESS ROUTINE ADDRESS

;OBTAIN ROUTINE ADDRESS FROM TABLE AND TRANSFER
CONTROL TO IT, LEAVING ALL REGISTER PAIRS UNCHANGED

354 ARRAY OPERATIONS

LD A, (HL)
INC HL
LD H, (HL)
LD L,A
EX (SP), HL

RET

LENSUB EQU 3

..JMPTAB:
DW SUB'O
DW SUBl
DW SUB2

;MOVE ROUTINE ADDRESS TO HL

;RESTORE OLD HL, PUSH ROUTINE ADDRESS

;JUMP TO ROUTINE

;NUMBER OF SUBROUTINES IN TABLE

;JUMP TABLE
;ROUTINE (I

;ROUTINE 1
;ROUTINE 2

;THREE TEST SUBROUTINES FOR JUMP TABLE
SUBO:

LD A, 1 ;TEST ROUTINE (I SETS (A) 1
RET

SUBl :
LD A,2 ;TEST ROUTINE 1 SETS (A) 2
RET

SUB2:
LD A,3 ;TEST ROUTINE 2 SETS (A) 3
RET

SAMPLE EXECUTION:

SC9H:
SUB
CALL

A
'-'TAB

;EXECUTE ROUTINE 0
; AFTER EXECUTION, (A) 1

LD A,1
CALL JTAB
LD A,2
CALL ",,'TAB
LD A,3
CALL ",,'TAB

JR SC9H

END

9H JUMP TABLE (JTAB) 355

;EXECUTE ROUTINE 1
; AFTER EXECUTION, (A) = 2
;EXECUTE ROUTINE 2
; AFTER EXECUTION, (A) = 3
;EXECUTE ROUTINE 3
; AFTER EXECUTION, CARRY 1

;LOOP FOR MORE TESTS

Read a Une from a Terminal (RDLINE) 10A

Reads a line of ASCII characters ending with
a carriage return and saves them in a buffer.
Defines the control characters Control H (08
hex), which deletes the latest character, and
Control X (18 hex), which deletes the entire line.
Sends a bell character (07 hex) to the terminal if
the buffer overflows. Echoes each character
placed in the buffer. Echoes non-printable char
acters as an up arrow or caret (1\) followed by the
printable equivalent (see Table 10-1). Sends a
new line sequence (typically carriage return, line
feed) to the terminal before exiting.

RDLINE assumes the following system-depen
dent subroutines:

1. RDCHAR reads a character from the
terminal and puts it in the accumulator.

2. WRCHAR sends the character in the
accumulator to the terminal.

3. WRNEWL sends a new line sequence to
the terminal.

These subroutines are assumed to change all
user registers.

RDLINE is an example of a terminal input
handler. The control characters and 110 subrou
tines in a real system will, of course, be computer
dependent. A specific example in the listing is
for a computer running the CPI M operating
system with a standard Basic Disk Operating
System (BDOS) accessed by calling memory
address 0005 16 , Table 10-2 lists commonly used
CP1M BDOS functions. For more information
on CPI M, see Osborne CPj M User Guide,
Second Edition by Thom Hogan (Berkeley:
OsborneI McGraw-Hill, 1982).

Procedure: The program starts the loop by
reading a character. If the character is a carriage

356

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 162 cycles to place
an ordinary character in the buffer, not including the
execution time of RDCHAR or WRCHAR

Program Size: 148 bytes

Data Memory Required: None

Special cases:
I. Typing Control H (delete one character) or

Control X (delete the entire line) when the buffer is
empty has no effect.

2. The program discards an ordinary character
received when the buffer is full, and sends a bell
character to the terminal (ringing the bell).

return, the program sends a new line sequence to
the terminal and exits. Otherwise, it checks for
the special characters Control H and Control X.
If the buffer is not empty, Control H makes the
program decrement the buffer pointer and char
acter count by I and send a backspace string
(cursor left, space, cursor left) to the terminal.
Control X makes the program delete characters
until it empties the buffer.

If the character is not special, the program
determines whether the buffer is full. If it is, the
program sends a bell character to the terminal.
If not, the program stores the character in the
buffer, echoes it to the terminal, and increments
the character count and buffer pointer.

Before echoing a character or deleting one
from the display, the program must determine
whether the character is printable. If it is not
(that is, it is a non-printable ASCII control
character~, the program must display or delete
two characters, the control indicator (up arrow
or caret) and the printable equivalent (see Table
10-1). Note, however, that the character is stored
in its non-printable form.

10A I<EAD A LINE FROM A TERMINAL (RDLlNE) 357

Table 10-1: ASCII Control Characters and Printable Equivalents

Name Hex Value Printable Name Hex Value Printable
Equivalent Equivalent

NUL 00 Control @ DLE 10 Control P
SOH 01 Control A DCI II Control Q
STX 02 Control B DC2 12 Control R
ETX 03 Control C DC3 13 Control S
EOT 04 Control D DC4 14 Control T
ENQ 05 Control E NAK 15 Control U
ACK 06 Control F SYN 16 Control V
BEL 07 Control G ETB 17 Control W
BS 08 Control H CAN 18 Control X
HT 09 Control I EM 19 Control Y
LF OA Control J SUB IA Control Z
VT OB Control K ESC IB Control [
FF OC Control L FS IC Control ...
CR OD Control M GS ID Control]
SO OE Control N RS IE Control/\
SI OF Control 0 VS IF Control

Table 10-2: BDOS Functions for CP / M 2.0

Function
Number Function Input Output

(Decimal in Name Parameters Parameters
Register C)

0 System Reset None None

I Console Input None A = ASCII character

2 Console Output E = ASCII character None

3 Reader Input None A = ASCII character

4 Punch Output E = ASCII character None

5 List Output E = ASCII character None

6 Direct Console Input E = FF l6 A = ASCII character or 00
if no character is available

6 Direct Console Output E = ASCII character None

7 Get I/O Byte None A= IOBYTE

8 Set I/O Byte E= IOBYTE None

9 Print String DE = String Address None

10 Read Console Buffer DE = Buffer Address (Data in buffer)

II Get Console Status None A = 00 (no character) or A =
FFl6 (character ready)

358 INPUT/OUTPUT

Entry Conditions

Base address of buffer in HL
Length (size) of buffer in bytes in A

Examples

Exit Conditions

Number of characters in the buffer in A

I. Data:
Result:

2. Data:

Result:

Line from keyboard is 'ENTERcr'
Character count = 5 (line length)
Buffer contains 'ENTER'
'ENTER' is sent to terminal, followed by a

new line sequence (typically either carriage
return, line feed or just carriage return).

Note that the 'cr' (carriage return) character
does not appear in the buffer.

Line from keyboard is 'DMcontroIHNcontrol
XENTETcontroIHRcr'

Character count 5 (length of final line)
Buffer contains 'ENTER'
'DMBackspaceStringNBackspaceStringBack-

spaceStringENTETBackspaceStringR' is
sent to terminal, followed by a new line
sequence. The Backspace String deletes a
character from the screen and moves the
cursor left one space.

The sequence of operations is as follows:

What has happened is

a. The operator types 'D', 'M'.
b. The operator sees that 'M' is wrong (it

should be 'N'), types Control H to delete it, and
types 'N'.

c. The operator then sees that the initial 'D' is
also wrong (it should be 'E'). Since the error is
not in the latest character, the operator types
Control X to delete the entire line, and then
types 'ENTET'.

d. The operator sees that the second 'T' is
wrong (it should be 'R '), types Control H to
delete it, and types 'R'.

e. The operator types a carriage return to end
the line.

Character Initial Final Sent to
Typed Buffer Buffer Terminal

D Empty 'D' D
M 'D' 'DM' M
Control H 'DM' 'D' Backspace string
N 'D' 'DN' N
Control X 'DN' Empty 2 Backspace strings
E Empty 'E' E
N 'E' 'EN' N
T 'EN' 'ENT' T
E 'ENT' 'ENTE' E
T 'ENTE' 'ENTET' T
Control H 'ENTET' 'ENTE' Backspace string
R 'ENTE' 'ENTER' R
cr 'ENTER' 'ENTER' New line string

Tit Ie
Name:

F'1.1r-pose:

Enh-Y:

1OA I~EAD A LINE FROM A TERMINAL (RDLlNE) 359

Readline
ROLINE

Read characters from CP/M BOOS CON: device
until carriage return encountered. All control
characters but the following are placed in the
buffer and displayed as the equivalent printable;
ASCII character preceded bY a caret.

Control H: delete last character
Control X: delete entire line

Register pair HL = Base address of buffer
Register A Length of buffer in bytes

E>:i t : Register" A Number of characters in buffer

Registers used: AF,BC,DE, HL

BELL
BSKEY
CR
CRKEY
CSRLFT
OEU<EY
LF
SPACE
UPARRW

Time:

~,i ze:

~EQUATES

EQU 07H
EQU 08H
EG~U (lDH
EQU ODH
EQU (l8H
EQU 18H
EQU OAH
EQU 20H
EQU 5EH

Nelt appl icable

Program 148 bytes

;BELL CHARACTER (RINGS BELL ON TERMINAL)
;BACKSPACE KEYBOARD CHARACTER
;CARRIAGE RETURN FOR CONSOLE
;CARRIAGE RETURN KEYBOARD CHARACTER
;MOVE CURSOR LEFT FOR CONSOLE
;DELETE LINE KEYBOARD CHARACTER
;LINE FEED FOR CONSOLE
;SPACE CHARACTER
;UF' ARROW OR CARET USED AS CONTROL INDICATOR

;INITIALIZE CHARACTER COUNT TO ZERO

BOOS
DIRIO
P~:::TRG

STERM

ROLINE:

INIT:

EQU
EQU
Er.;:!U
EQU

LD

LD

0005H
6
9
"$"

C.A

B.O

;BDOS ENTRY POINT
;BDOS DIRECT I/O FUNCTION
;BDOS PRINT STRING FUNCTION
;CP/M 'STRING TERMINATOR

;C = BUFFER LENGTH
;HL = BUFFER POINTER

;CHARACTER COUNT = 0

;READ CHARACTERS UNTIL A CARRIAGE RETURN IS TYPED

360 INPUT/OUTPUT

RDLOOP:
CALL RDCHAR ;READ CHARACTER FROM KEYBOARD - NO ECHO

;CHECK FOR CARRIAGE RETURN. EXIT IF FOUND
CP CRKEY
JR Z.EXITRD ;END OF LINE IF CARRIAGE RETURN

;BRANCH IF NOT BAC~SPACE

;IF BACKSPACE. DELETE ONE CHARACTER
; THEN START READ LOOP AGAIN

;CHECK FOR BACKSPACE AND DELETE CHARACTER IF FOUND
CP BSKEY
.JR NZ. RDLPl
CALL BACI<~:;P

.JR RDLOOP

;CHECK FOR DELETE LINE CHARACTER AND EMPTY BUFFER IF FOUND
RDLPl :

DELl:

CP
.JR

CALL.
.JR
.JR

DELKEY
NZ.RDLP2

BACKSP
NZ,DELl
RDLOOP

;BRANCH IF NOT DELETE LINE

;DELETE A CHARACTER
;CONTINUE UNTIL BUFFER EMPTY
;THIS ACTUALLY BACKS UP OVER EACH

CHARACTER RATH.ER THAN .JUST MOVING
UP A LINE

;NOT A SPECIAL CHARACTER
CHECK IF BUFFER IS FULL

; IF FULL. RING BELL AND CONTINUE
; IF NOT FULL, STORE CHARACTER AND ECHO

RDLP2:
LD
LD
CP
.JR
LD
CAL.L
...JR

E,A
A,B
C
C,STRCH
A,BELL
WRCHAR
RDL.OOP

;SAVE CHARACTER
;IS BUFFER FULL?
; COMPARE COUNT AND BUFFER LENGTH
;.JUMP IF BUFFER NOT FULL
;FULL, RING THE TERMINAL~S BELL

;THEN CONTINUE THE READ LOOP

;BUFFER NOT FULL. STORE CHARACTER
STRCH:

LD
LD
INC
INC

A.E
(HL),A
HL
B

;GET CHARACTER BACK
;STORE CHARACTER IN BUFFER
; INCREMENT BUFFER POINTER
; INCREMENT CHARACTER COUNT

HEX)

;RECOVER CHARACTER
;CHANGE TO PRINTABLE FORM
;ECHO CHARACTER TO TERMINAL
;THEN CONTINUE READ LOOP

CHARACTER IS CONTROL, THEN OUTPUT
ARROW FOLLOWED BY PRINTABLE EQUIVALENT

SPACE ;CONTROL IF LESS THAN SPACE (20
NC,PRCH ;JUMP IF A PRINTABLE CHARACTER
AF ;SAVE CHARACTER
A,UPARRW ;WRITE UP ARROW OR CARET
WRCHAR
AF
A,40H
WRCHAR
RDL.OOP

:IF
; UP
CP
.JR
PUSH
LD
CAL.L
POP
ADD
CAL.L
.JR

PRCH:

EXITRD:

10A READ A LINE FROM A TERMINAL (RDLlNE) 361

;EXIT
;SEND NEW LINE SEQUENCE (USUALLY CR,LF) TO TERMINAL
;GET LENGTH OF LINE

CALL
LD
RET

WRNEWL
A,B

;SEND NEW LINE SEQUENCE
;LINE LENGTH = CHARACTER COUNT

;ROUTINE: RDCHAR
; PURPOSE: READ CHARAC1ER BUT DO NOT ECHO TO CONSOLE
; ENTRY: NONE
;EXIT: REGISTER A = CHARACTER
;REGISTERS USED: ALL EXCEPT BC, HL
;**

;WAIl FOR CHARACTER FROM CONSOLE

;***
;ROUTINE: WRCHAR
; PURPOSE: WRITE CHARACTER TO CONSOLE
;ENTRY: REGISTER A = CHARACTER
;EXIT: NONE
;REGISTERS USED: ALL EXCEPT Be, HL
;***

RDCHAR:

RDWAIT:

WRCHAR:

PUSH
PUSH

LD
LD
CALL
OR
·JR

POP
POP
RET

PUSH
PU:5H

HL
Be

C.DIRIO
E,OFFH
BDOS
A
Z,RDWAIT

DE
HL

HL
Be

;SAVE BC.HL

;DIRECT CONSOLE 1/0
; INDICATE INPUT
;READ CHARACTER FROM CONSOLE
;LOOP IF NO CHARACfER (A = 0)

; RE::nORE BC, HL

;RETURN WITH CHARACTER IN REGISTER A

; SAVE Be:, HL

;WRITE A CHARACTER
LD C,DIRIO
LD E,A
CALL BDOS

;DIRECT CONSOLE I/O
; INDICATE rnJTPUT - CHARAC1ER IN E
;WRITE CHARACTER ON CONSOLE

POP
POP
RET

Be
HL

; RE~nORE Be. HL

*-***
ROUTINE: WRNEWL
PURPOSE: ISSUE NEW LINE SEQUENCE TO CONSC~E

362 INPUT/OUTPUT

NORMALLY, THIS IS A CARRIAGE RETURN AND
LINE FEED, BUT SOME COMPUTERS REQUIRE ONLY
A CARRIAGE RETURN.

;ENTRY: NONE
;EXIT: NONE
;REGISTERS USED: ALL EXCEPT BC,HL
;~~~~~*************~**************~*********

WRNEWL:
PUSH
PU:;;H

HL
Be

~ SAVE Be. HL

~SEND NEW LINE STRING TO CONSOLE
lD DE,NLSTRG ;POINT TO NEW LINE STRING
CALL WRSTRG ~SEND STRING TO CONSOLE

POP
POP
RET

NLSTRG: DB

BC
HL

CR.LF,STERM

; RE~:;;rORE Be, HL

~NEW LINE STRING
; NOTE: 8TERM ($) IS CP/M TERMINATOR

:**
;ROUTINE: BACKSP
: PURPOSE: PERFORM A DESTRUCTIVE BACKSPACE
;ENTRY: B = NUMBER OF CHARACTERS IN BUFFER

HL = NEXT AVAILABLE BUFFER ADDRESS
;EXIT: IF NO CHARACTERS IN BUFFER

Z = 1
EU:;E

Z =. (I

; CHARACTER REMOVED FROM BUFFER
~REGISTERS USED: ALL EXCEPT C, HL

BACKSP:
:CHECK FOR EMPTY BUFFER
lD A,B ;TE8T NUMBER OF CHARACTERS
OR A
RET Z ~EXIT IF BUFFER EMPTY

;OUTPUT BACKSPACE STRING
; TO REMOVE CHARACTER FROM DISPLAY
DEC HL ;DECREMENT BUFFER POINTER
PUSH HL ;SAVE BC, HL
PU::;;H Be
LD A,(HL) ;GET CHARACTER
CP 20H ;IS IT A CONTROL?
JR NC,BSl : NO, BRANCH, DELETE ONLY ONE CHARACTER
LD DE, BS8TRG ; YES, DELETE 2 CHARACTERS

(UP ARROW AND PRINTABLE EQUIVALENT)
CALL WRSTRG ;WRITE BACKSPACE STRING

BS1: LD DE, BSSTRG
CALL WRSTRG ;WRITE BACKSPACE STRING
POP BC :RESTORE BC, HL
POP HL

10A READ A LINE FROM A TERMINAL (RDLlNE) 363

;DECREMENT CHARACTER COUNT BY 1
DEC B ;ONE LESS CHARACTER IN BUFFER
RET

;DESTRUCTIVE BACKSPACE STRING FOR CONSOLE
;MOVES CURSOR LEFT, PRINTS SPACE OVER CHARACTER. MOVES
; CURSOR LEFT
;NOTE: STERM ($) IS CP/M STRING TERMINATOR

BSSTRG: DB CSRLFT,SPACE,CSRLFT,STERM

;*********************************
; ROUT INE: WR~:;;rRG

; PURPOSE: OUTPUT STRING TO CONSOLE
;ENTRY: HL = BASE ADDRESS OF STRING
;EXIT: NONE
;REGISTERS USED: ALL EXCEPT Be
;*********************************

WRSTRG:
PUSH
LD
CALL
POP
RET

BC
c, p~:nRG
BDOS
BC

;SAVE BC
;FUNCTION IS PRINT STRING
;OUTPUT STRING TERMINATED WITH $

; RE~:HORE BC

SAMPLE EXECUTION:

;OUTPUT NEXT CHARACTER

;SAVE NUMBER OF CHARACTERS IN BUFFER
;POINT TO START OF BUFFER

; INCREMENT BUFFER POINTER
;DECREMENT CHARACTER COUNT
; CONTINUE UNTIL ALL CHARACTERS SENT
;THEN END WITH CR,LF

;HL = INPUT BUFFER ADDRESS
;A = BUFFER LENGTH
;READ A LINE
;TEST LINE LENGTH
;NEXT LINE IF LENGTH IS (>

G'~UEST I ON MARK

;OUTPUT PROMPT (1)

;OPERATOR PROMPT
; EQUATES

PROMPT EQU ." --;1 .~

SC1(>A:
; READ LINE FROM CONSOLE
LD A, PROMPT
CALL WRCHAR
LD HL,INBUFF
LD A,LINBUF
CALL RDLINE
OR A
..JR Z,SCI0A

; ECHO LINE TO CONSOLE
LD B,A
LD HL,INBUFF

TLOOP:
LD A, (HL)
CALL WRCHAR
INC HL
D.JNZ TLOOP

CALL WRNEWL

.JR SCI0A

364 INPUT/OUTPUT

;DATA SECTION
LINBUF EQU 16
INBUFF: DS LINBUF

END

;LENGTH OF INPUT BUFFER
,INPUT BUFFER

Write a Line to an Output Device (WRLINE) 108

Writes characters until it empties a buffer
with given length and base address. Assumes the
system-dependent subroutine WRCHAR, which
sends the character in the accumulator to the
output device.

WRLINE is an example of an output driver.
The actual 110 subroutines will, of course, be
computer-dependent. A specific example in the
listing is for a CPI M-based computer with a
standard Basic Disk Operating System (BDOS)
accessed by calling address 0005 16 ,

Procedure: The program exits immediately if
the buffer is empty. Otherwise, it sends characters

Entry Conditions

Base address of buffer in HL

Number of characters in the buffer in A

Example

I. Data: Number of characters 5
Buffer contains 'ENTER'

Result: 'ENTER' sent to the output device

Registers Used: AF, BC, DE, HL

Execution Time: 18 cycles overhead plus 43 cycles
per byte besides the execution time of subroutine
WRCHAR

Program Size: 22 bytes

Data Memory Required: None

Special case: An empty buffer causes an immediate
exit with nothing sent to the output device.

to the output device one at a time until it empties
the buffer. The program saves all temporary
data in memory rather than in registers to
avoid dependence on WRCHAR.

Exit Conditions

None

Tit Ie
Name:

Write line
WRLINE

365

366 INPUT/OUTPUT

Entry:

Exit:

Write characters to CPIM BOOS CON: device

Register pair HL = Base address of buffer
Register A = Number of characters in buffer

None

Registers used: All

BDOS
DIRIO

Time:

; EG!UATES
EG~U (l(l(l5H
EG!U ~.

;BDOS ENTRY POINT
;BDOS DIRECT 110 FUNCTION

WRLINE:
;EXIT IMMEDIATELY IF
OR A
RET Z
LD B,A

BUFFER IS EMPTY
;TEST NUMBER OF CHARACTERS
; RETURN IF BUFFER EMPTY
;B = COUNTER
;HL = BASE ADDRESS OF BUFFER

;LOOP SENDING CHARACTERS TO OUTPUT DEVICE
WRL.LP:

LD
CAl.L
INC
D.JNZ

RET

A, (HL)
WRCHAR
HL
WRLLP

;GET NEXT CHARACTER
;SEND CHARACTER TO OUTPUT DEVICE
; INCREMENT BUFFER POINTER
;DECREMENT COUNTER
; CONTINUE UNTIL ALL CHARACTERS SENT

;***
;ROUTINE: WRCHAR
; PURPOSE: WRITE CHARACTER TO OUTPUT DEVICE
; ENTRY: REGISTER A = CHARACTER
;EXIT: NONE
;REGISTERS USED: AF,DE
;***

WRCHAR:
PUSH Hl. ; SAVE Be, HL
PUSH Be

L.D C,DIRIO ;DIRECT 1/0 FUNCTION

LD ErA ; CHARACTER IN REGISTER E
CALL BDOS ; OUTPUT CHARACTER

POP Be ; RESTORE Be, HL
POP HL
RET

SAMPLE EXECUTION:

1OB WRITE A LINE TO AN OUTPUT DEVICE (WRLlNEJ 367

RCBUF E(;,~U 10 ;BDOS READ CONSOLE BUFFER FUNCTION

;BDOS READ CONSOLE BUFFER FUNCTION USES
THE FOLLOWING BUFFER FORMAT:

BYTE 0 BUFFER LENGTH (MAXIMUM NUMBER OF CHARACTERS)
BYTE1: NUMBER OF CHARACTERS READ (LINE LENGTH)
BYTE 2 ON: ACTUAL CHARACTERS

; CHARACTER EQUATE~;

CR EQU ODH
LF EQU ClAH
PROMPT E(;,~U --?--

SC10B:
;READ LINE FROM CONSOLE
LD A, PROMPT
CALL WRCHAR
LD DE,INBUFF
LD C,RCBUF
CALL BDOS
LD A,LF
CALL WRCHAR

;WRITE LINE TO CONSOLE
LD HL,INBUFF+1
LD A,M
INC HL
CALL WRLINE
LD HL,CRLF
LD A,2
CALL WRLINE

..JR SC1C1B

; DATA SECTION
CRLF: DB CR,LF
LINBUF EQU lOH
INBUFF: DB LINBUF

OS LINBUF

END

;CARRIAGE RETURN FOR CONSOLE
;LINE FEED FOR CONSOLE
;OPERATOR PROMPT = QUESTION MARK

;OUTPUT PROMPT (?)

;POINT TO INPUT BUFFER
;BDOS READ LINE FUNCTION
;REAO LINE FROM CONSOLE
;OUTPUT LINE FEED

;POINT AT LENGTH BYTE RETURNED BY CP/M
;GET LENGTH OF LINE
;POINT TO FIRST DATA BYTE OF INBUFF
;WRITE LINE
;OUTPUT CARRIAGE RETURN, LINE FEED
;LENGTH OF CRLF STRING
;WRITE CRLF STRING

; CONTINUE

;CARRIAGE RETURN, LINE FEED
;LENGTH OF INPUT BUFFER
;LENGTH OF INPUT BUFFER
;DATA BUFFER

CRC·16 Checking and Generation
(ICRe: 16,CRe: 16,GCRe:16) 10C

Generates a 16-bit cyclic redundancy check
(CRC) based on the IBM Binary Synchronous
Communications protocol (BSC or Bisync).
Uses the polynomial Xl6 + XIS + X2 + I. Entry
point ICRCI6 initializes the CRC to 0 and the
polynomial to the appropriate bit pattern. Entry
point CRC 16 combines the previous CRC with
the CRC generated from the current data byte.
Entry point GCRC 16 returns the CRC.

Procedure: Subroutine ICRCI6 initializes the
CRC to 0 and the polynomial to a I in each bit
position corresponding to a power of X present
in the formula. Subroutine CRC 16 updates the
CRC for a data byte. It shifts both the data and
the CRC left eight times; after each shift, it
EXCLUSIVE-ORs the CRe with the polynomial
if the EXCLUSIVE-OR of the data bit and the
CRC's most significant bit is I. Subroutine
CRC 16 leaves the CRC in memory locations
CRC (less significant byte) and CRC+ I (more

Entry Conditions

I. ICRC 16: none

2. CRCI6: data byte in A, previous CRC in
memory locations CRC (less significant byte)
and CRC+ I(more significant byte), eRC polynomial
in memory locations PLY (less significant byte)
and PLY+ I (more significant byte)

3. GCRCI6: CRC in memory locations CRC
(less significant byte) and CRC+ I (more significant
byte)

368

Registers Used:

1. ICRCI6: HL

2. CRCI6: None

3. GCRCI6: HL

Execution Time:

1. ICRCI6: 62 cycles

2. CRCI6: 148 cycles overhead plus an average of
584 cycles per data byte, assuming that the previous
CRC and the polynomial must be EXCLUSIVE-ORed
in half of the iterations

3. GCRCI6: 26 cycles

Program Size:

1. ICRCI6: 1.3 bytes

2. CRCI6: 39 bytes

3. GCRCI6: 4 bytes

Data Memory Required: 4 bytes anywhere in
RAM for the CRC (2 bytes starting at address CRC)
and the polynomial (2 bytes starting at address PLY)

significant byte). Subroutine GCRC1610ads the
CRC into HL.

Exit Conditions

I. ICRCI6: 0 (initial CRC value) in memory
locations CRC (less significant byte) and
CRC+ I (more significant byte), CRC
polynomial in memory locations PLY (less
significant byte) and PLY+ I (more significant
byte)

2. CRCI6: CRC with current data byte in
cluded in memory locations CRC (less significant
byte) and CRC+ I (more significant byte)

3. GCRCI6: CRC in HL

10C CRC-16 CHECKING AND GENERATION (1CRC16, CRC16, GCRC16) 369

Examples

I. Generating a CRC

a. Call ICRCI6 for initialization and to start the CRC
at O.

b. Call CRCI6 repeatedly to update the CRC for each
data byte.

c. Call GCRCI6 to obtain the final CRe.

Note that only ICRC 16 depends on the particular
CRC polynomial used. To change the polynomial,
simply change the data ICRC 16 loads into

REFERENCE

2. Checking a CRC

a. Call ICRCI6 for initialization and to start the CRC
at O.

b. Call CRCI6 repeatedly to update the CRC for each data
byte (including the stored CRC) for checking.

c. Call GCRCI6 to obtain the final CRC; it will be 0 if
there were no errors.

memory locations PLY (less significant byte)
and PLY+ 1 (more significant byte).

J.E. McNamara. Technical Aspects ofData Communications, 2nd ed. Billerica, Mass.:
Digital Press, 1982. This book contains explanations of CRC and communications
protocols.

Title
Name:

Put"pose:

Genet"ate CRC-16
CRC16

Generate a 16-bit eRe based on IBM/s Binary
Synchronous Communications protocol. The CRC is
based on the polynomial:

(" indicates lito the power")
X"16 + X"15 + X"2 + 1

To generate a CRC:
1) Call ICRC16 to initialize the CRC

polynomial and clear the CRC.
2) Call CRC16 for each data byte.
3) Call GCRC16 to obtain the CRe.

It should then be appended to the data,
high byte f host.

370 INPUT/OUTPUT

Tel check a eRe:
1) Call ICRC16 to initialize the CRC.
2) Call CRC16 for each data byte and

the 2 bytes of CRC previously generated.;
3) Call GCRC16 to obtain the CRe. It will

be zero if no errors occurred.

Entt"y: ICRC16 - None
CRC16 - Register A = Data byte
GCRC16 - None

Exit: ICRC16 - CRC, PLY initialized
CRC16 - CRC updated
GCRC16 - HL = CRe

Registers used: None

Time: 148 cycles overhead plus an average of 584
cycles per byte, assuming that half the
iterations require EXCLUSIVE-ORing the CRC
and the polynomial.

Size: Program 56 bytes
Data 4 bytes

:LOOP THROUGH EACH BIT GENERATING THE CRe
LD B,8 ;8 BITS PER BYTE
LD DE, (PLY) :GET POLYNOMIAL
LD HL, (CRC) ;GET CURRENT CRC VALUE

CRC16:

CRCLP:

: SAVE
PUSH
PUSH
PUSH
PUSH

LD
AND
XOR
LD
ADD
,JR

REGISTERS
AF
Be
DE
HL

e,A
100000008
H
H,A
HL,HL
NC,CRCLPI

;SAVE DATA C
;GET BIT 7 OF DATA
;EXCLUSIVE-OR BIT 7 WITH BIT 15 OF CRC

;SHIFT CRC LEFT
;JUMP IF BIT 7 OF EXCLUSIVE-OR WAS 0

;BIT 7
LD
XOR
LD
LD
XOR
LD

WAS 1,
A,E
L
L,A
A,D
H
H,A

SO EXCLUSIVE-OR CRC WITH POLYNOMIAL
:GET LOW BYTE OF POLYNOMIAL
;EXCLUSIVE-OR WITH LOW BYTE OF eRe

;GET HIGH BYTE OF POLYNOMIAL
;EXCLUSIVE-OR WITH HIGH BYTE OF CRe

10C CRC-16 CHECKING AND GENERATION (1CRC16, Ci<C16, GCRC16) 371

CRCLP1 :
LD
RLA
D.JNZ

LD

A,C

CRCLP

(CRC),HL

;RESTORE DATA
;SHIFT NEXT DATA BIT TO BIT 7
;DECREMENT BIT COUNTER
; JUMP IF NOT THROUGH 8 BITS
;SAVE UPDATED CRC

;RESTORE REGISTERS AND EXIT
POP HL
POP DE
POP BC
POP AF
RET

;***
;ROUTINE: ICRC16
; PURPOSE: INITIALIZE CRC AND PLY
; ENTRY: NONE
;EXIT: CRC AND POLYNOMIAL INITIALIZED
;REGISTERS USED: HL
;**

ICRC16:
LD
LD
LD
LD

RET

HL,O
(CRC),HL
HL,08005H
(PLY),HL

;CRC (I

;PLY 8(105H
;8005H IS FOR XA 16+X A 15+X A 2+1
;A 1 IS IN EACH BIT POSITION

FOR WHICH A POWER APPEARS IN
; THE FORMULA (BITS 0, 2, AND 15)

GCRC16:

;***
; ROUTINE: GCRC1/S
; PURPOSE: GET CRC VALUE
; ENTRY: NONE
;EXIT: REGISTER PAIR HL = CRC VALUE
;REGISTERS USED: HL
;***-

LD HL, (CRC) ;HL = CRe
RET

;DATA
CRC: DS 2 ;CRC VALUE
PLY: D::; 2 ;F'OLYNOMIAL VALUE

SAMPLE EXECUTION:

8C10C::
;GENERATE A CRC FOR THE NUMBER 1 AND C~ECK IT

372 INPUT/OUTPUT

;GENERATE CRC FOR THE SEQUENCE 0,1,2, ..• ,255 AND CHECK IT
CALL ICRC16 ;INITIALIZE CRC, POLYNOMIAL
LD B,O ;START DATA BYTES AT 0

;CHECK CRC BY GENERATING IT AGAIN
CALL ICRCl6 ;INITIALIZE CRC, POLYNOMIAL
LD B,O ;START DATA BYTES AT 0

GENLP:

CHKLP:

CALL
LD
CAL.L
CALL
EX
CALL
LD
CALL
LD
CALL.
LD
CALL
CALL

LD
CALL
INC
,jR

CALL.
EX

LD
CALL
INC
..JR

ICRC16
A,1
CRC16
GCRCl6
DE,HL
IeRCl6
A, 1
CRel6
A,D
CRC16
A,E
CRe16
GCRC16

A,B
CRCl6
B
NZ,GENLP

GCRC16
DE,HL

A,B
GRell£.
B
NZ,CHI<LF'

;INITIALIZE CRC, POLYNOMIAL
;GENERATE CRC FOR 1

;SAVE CRC IN DE
;INITIALIZE AGAIN

;CHECK CRC BY GENERATING IT FOR DATA

; AND STORED CRC ALSO

;CRC SHOUL.D BE ZERO IN HL

;GET DATA BYTE
;UPDATE CRC
;ADD 1 TO PRODUCE NEXT DATA BYTE
;BRANCH IF NOT DONE

;GET RESULTING CRC
;AND SAVE IT IN DE

;GET DATA BYTE
;UPDATE CRC
;ADD 1 TO PRODUCE NEXT DATA BYTE

;ALSO INCLUDE STORED CRC IN CHECK
LD A,D ;UPDATE FOR HIGH BYTE OF STORED CRC
CALL. CRCl6
LD A,E ;UPDATE FOR L.OW BYTE OF STORED CRe
CALL CRGle.,

CALL GCRCl6 ;GET RESULTING CRC
;IT SHOULD BE (I

,jR SClOC

END

I/O Device Table Handler (IOHDLR) 10D

Performs input and output in a device
independent manner using I10 control blocks
and an 110 device table. The 110 device table is
a linked list; each entry contains a link to the
next entry, the device number, and starting
addresses for routines that initialize the device,
determine its input status, read data from it,
determine its output status, and write data to it.
An 110 control block is an array containing the
device number, operation number, device status,
and the base address and length of the device's
buffer. The user must provide IOHDLR with the
base address of an 110 control block and the
data if only one byte is to be written. IOHDLR
returns the status byte and the data (if only one
byte is read).

This subroutine is an example of handling
input and output in a device-independent man
ner. The 110 device table must be constructed
using subroutines INITDL, which initializes the
device list to empty, and ADDDL, which adds a
device to the list.

An applications program will perform input
or output by obtaining or constructing an 1/0
control block and then calling IOHDLR. IOHDLR
uses the 110 device table to determine how to
transfer control to the I10 driver.

Procedure: The program first initializes the
status byte to 0, indicating no errors. It then
searches the device table, trying to match the
device number in the 110 control block. If it
does not find a match, it exits with an error
number in the status byte. If it finds a match, it

Entry Conditions

1. IOHDLR: Base address of inputIoutput
control block in IX

Registers Used:

I. IOHDLR: AF,BC,DE,HL,IX

2. INITDL: HL

3. ADDDL: DE

Execution Time:

I. IOHDLR: 270 cycles overhead plus 90 cycles
for each unsuccessful match of a device number

2. rN ITO L: 36 cycles

3. ADppL: 72 cycles

Program Size:

I. IOHDLR: 70 bytes

2. INITDL: 7 bytes

3. ADDDL: 12 bytes

Data Memory Required: 3 bytes anywhere in
RAM for the device list header (2 bytes starting at
address DVLST) and temporary storage for data to
be written without a buffer (I byte at address
BDATA)

checks for a valid operation and transfers control
to the appropriate routine from the device table
entry. That routine must end by transferring
control back to the original caller. If the operation
is invalid (the operation number is too large or
the starting address for the routine is 0), the
program returns with an error number in the
status byte.

Subroutine INITDL initializes the device list,
setting the initial link to O.

Subroutine ADDDL adds an entry to the
device list, making its base address the head of
the list and setting its link field to the old head of
the list.

Exit Conditions

1. IOHDLR: 110 control block status byte
in A if an error is found;

373

374 INPUT/OUTPUT

Data byte (if the operation is
to write one byte) in A

2. INITDL: None

3. ADDDL: Base address of a device table
entry in HL

Example

otherwise, the routine exits
to the appropriate I/O driver.

Data byte in A if the opera
tion is to read one byte

2. INITDL: Device list header (addresses
DVLST and DVLST+1)
cleared to indicate empty list

3. ADDDL: Device table entry added to
list

I. The example in the listing uses the following structure:

Input/ Output Operations

Operation
Number

o
I
2
3

4
5
6

Index

o
I
2
3

4

5
6

Operation

Initialize device
Determine input status
Read I byte from input device
Read N bytes (normally I line) from input

device
Determine output status
Write I byte to output device
Write N bytes (normally I line) to output

device '

Input/Output Control Block

Contents

Device number
Operation number
Status
Less significant byte of base address of

buffer
More significant byte of base address of

buffer
Less significant byte of buffer length
More significant byte of buffer length

Device Table Entry

2
3

4

5

6

7

8

9

10

II

12

13

14

15

16

More significant byte of link field (base address
of next entry)

Device number
Less significant byte of starting address of

device initialization routine
More significant byte of starting address of

device initialization routine
Less significant byte of starting address of

input status determination routine
More significant byte of starting address of

input status determination routine
Less significant byte of starting address of

input driver (read I byte only)
More significant byte of starting address of

input driver (read I byte only)
Less sigl1ificant byte of starting address of

input driver (N bytes or I line)
More significant byte of starting address of

input driver (N bytes or I line)
Less significant byte of starting address of

output status determination routine
More significant byte of starting address of

output status determination routine
Less significant byte of starting address of

output driver (write I byte only)
Mare significant byte of starting address of

output driver (write I byte only)
Less significant byte of starting address of

output driver (N bytes or I line)
More significant byte of starting address of

output driver (N bytes or I line)

Index

o
Contents

Less significant byte oflink field (base address
of next entry)

If an operation is irrelevant or undefined (such as output
status determination for a keyboard or input driver for a
printer), the corresponding starting address in the device
table is 0,

10D I/O DEVICE TABLE HANDLER (IOHDLR) 375

Status Values

Value Description

o No errors
I Bad device number (no such device)
2 Bad operation number (no such operation

or invalid operation)
3 Input data available or output device ready

254 Buffer too small for use by CP / M BOOS
function 10 (Read Console Buffer). This
function requires 2 bytes for the buffer
length and character count.

Tit Ie
Name:

Purpose:

I/O Device Table Handler
IOHDLR

Perform I/O in a device-independent manner.
This can be done only by accessing all
devices in the same way using an I/O Control
Block (IOCB) and a device table. The routines
here allow the following opet-ations:

Opet-at ion
o
1
2
3
4
5
6

number Description
Initialize device
Determine input status
Read 1 byte
Read N bytes
Determine output status
Wr ite 1 byte
Write N bytes

Other operations that could be included are
Open, Close, Delete, Rename, and Append, which
would support devices such as floppy disks.

A 10CB is an array of the following form:

IOCB + 0 Device number
IOCB + 1 Operation number
IOCB + 2 Status
IOCB + 3 Low byte of buffer address
IOCB + 4 = High byte of buffer address
IOCB + 5 Low byte of buffer length
IOCB + 6 High byte of buffer length

376 INPUT/OUTPUT

The device table is implemented as a linked
list. Two routines maintain the list: INITDL,
which initializes the device list to empty, and
ADDDL, which adds a device to the list.
A device table entry has the following form:

DVTBL +
DVTBL +
DVTBL +
DVTBL +
DVTBL +
DVTBL +
DVTBL +
DVTBL +
DVTBL +
DVTBL +
DVTBL +
DVTBL +
DVTBL +
DVTBL +
DVTBL +
DVTBL +
DVTBL +

o
1 =
2
3
4
5
6
7
8
9
10=
11=
12=
13=
14=
15=
16=

Low byte of link field
High byte of link field
Device number-
Low byte of device initialization
High byte of device initialization
Low byte of input status routine
High byte of input status routine
Low byte of input 1 byte routine
High byte of input 1 byte routine
Low byte of input N bytes routine
High byte of input N bytes routine
Low byte of output status routine
High byte of output status routine
Low byte of output 1 byte routine
High byte of output 1 byte routine
Low byte of output N bytes routine
High byte of output N bytes routine

Entry:

Exit:

Register IX = Base address of lOeB
Register A = For write 1 byte, contains the

data (no buffer is used)

Register A Copy of the IOCB status byte
Except contains the data for
read 1 byte (no buffer is used)

Status byte of IOCB is 0 if the operation was
completed successfully; otherwise, it contains
the error number.

Status value
o
1
2
3

254

Description
No errors
Bad device number
Bad operation number
Input data available or output
device ready

Buffer too small for CP/M BDOS
function 10 (Read Console
Buf fer-)

Registers used: AF,BC,DE,HL,lX

Time:

Size:

270 cycles minimum plus 90 cycles for each
device in the list which is not the requested
device

Program 89 bytes
Data 3 bytes

IOCBDN
IOCBOP
IOCBST
IOCBBA
IOCBBL
DTLNK
DTDN
DTSR

; IOCB AND
EQU 0
EQU 1
EQU 2
EQU 3
EQU 5
EQU 0
EQU 2
EQU 3

10D I/O DEVICE TABLE HANDLEI< (IOHDLR) 377

DEVICE TABLE EQUATES
; IOCB DEVICE NUMBER
; IOCB OPERATION NUMBER
; IOCB STATUS
; IOCB BUFFER ADDRESS
;IOCB BUFFER LENGTH
;DEVICE TABLE LINK FIELD
;DEVICE TABLE DEVICE NUMBER
;BEGINNING OF DEVICE TABLE SUBROUTINES

; OPERATION NUMBERS
NUMOP EQU 7 ;NUMBER OF OPERATIONS
INIT EQU 0 ; INITIALIZATION
ISTAT EQU 1 ; INPUT STATUS
R1BYTE EQU 2 ;READ 1 BYTE
RNBYTE EQU 3 ;READ N BYTES
(1ST AT EQU 4 ;OUTPUT STATUS
W1BYTE EQU 5 ;WRITE 1 BYTE
WNBYTE EGJ,U <::- ;WRITE N BYTES

NOERR
DEVERR
OPERR
DEVRDY
BUFERR

; STATUS VALUE::;
EQU 0
EQU 1
EG!U 2
EQU 3
EC::JU 254

;NO ERRORS
;BAD DEVICE NUMBER
;BAD OPERATION NUMBER
; INPUT DATA AVAILABLE OR OUTPUT DEVICE READY
;BUFFER TOO SMALL FOR BDOS READ CONSOLE BUFFER

IOHDLR:
LD (BDATA),A ;SAVE DATA BYTE FOR WRITE 1 BYTE

SRCHLP:

;INITIALIZE STATUS BYTE TO ZERO (NO ERRORS)
LD (IX+IOCBST),NOERR ;STATUS = NO ERRORS

;CHECK THAT OPERATION IS VALID
LD A, (IX+IOCBOP) ;GET OPERATION NUMBER FROM IOCB
LD B,A ;SAVE OPERATION NUMBER
CP NUMOP ;IS OPERATION NUMBER WITHIN LIMIT?
JR NCIBADOP ;JUMP IF OPERATION NUMBER TOO LARGE

;SEARCH DEVICE LIST FOR THIS DEVICE
;C = IOCB DEVICE NUMBER
;DE POINTER TO DEVICE LIST
LD CI(IX+IOCBDN);C = IOCB DEVICE NUMBER
LD DE, (DVLST) ;DE = FIRST ENTRY IN DEVICE LIST

;DE = POINTER TO DEVICE LIST
;B OPERATION NUMBER
;C = REQUESTED DEVICE NUMBER

;CHECK IF AT END OF DEVICE LIST (LINK FIELD = 0000)
LD AID ;TEST LINK FIELD
OR E
JR Z,BADDN ;BRANCH IF NO MORE DEVICE ENTRIES

378 INPUT/OUTPUT

~CHECK

LD
ADD
LD
CP
.JR

IF CURRENT ENTRY IS DEVICE IN IOCB
HL,DTDN ;POINT TO DEVICE NUMBER IN ENTRY
HL,DE
A,(HL)
C ;COMPARE TO REQUESTED DEVICE
Z,FOUND ;BRANCH IF DEVICE FOUND

;DEVICE NOT FOUND, SO
; TABLE ENTRY THROUGH
; MAKE CURRENT DEVICE
EX DE, HL
LD E, (HL)
INC HL
LD D, (HL)
,JR SRCHLP

ADVANCE TO NEXT DEVICE
LINK FIELD

LINK
~POINT TO LINK FIELD (FIRST WORD)
;GET LOW BYTE OF LINK

;GET HIGH BYTE OF LINK
~CHECK NEXT ENTRY IN DEVICE TABLE

;FOUND DEVICE, SO VECTOR TO APPROPRIATE ROUTINE IF ANY
~DE = ADDRESS OF DEVICE TABLE ENTRY
;B = OPERATION NUMBER

FOUND:

BADDN:

BADOP:

;GET
LD
LD
ADD
LD
ADD

ADD
LD
INC
LD
LD
OR
.JR
LD
,JP

LD
,JR

LD

ROUTINE ADDRESS
L,B
H,O
HL,HL
BC,DTSR
HL,BC

HL,DE
A, (HL)
HL
H, (HL)
L,A
H
Z,BADOP
A, l.BDATA)
(,HL)

A,DEVERR
EREXIT

A,OPERR

(ZERO INDICATES INVALID OPERATION)
~HL = 16-BIT OPERATION NUMBER

;MULTIPLY BY 2 FOR ADDRESS ENTRIES

;HL = OFFSET TO SUBROUTINE IN
; DEVICE TABLE ENTRY
;HL = ADDRESS OF SUBROUTINE
;GET SUBROUTINE'S STARTING ADDRESS

;IS STARTING ADDRESS ZERO?

;YES, ,JUMP (OPERATION INVALID)
;GET DATA BYTE FOR WRITE 1 BYTE
;OOTO SUBROUTINE

;ERROR CODE -- NO SUCH DEVICE

;ERROR CODE -~ NO SUCH OPERATION

EREXIT:
LD
RET

(, I X+IOCB~n) r A ;SET STATUS BYTE IN loeB

;~~~~~~~~~~~~~~~~~~~~%****~*****%**~~~~*~

;ROUTINE: INITDL
; PURPOSE: INITIALIZE DEVICE LIST TO EMPTY
; ENTRY: NONE
;EXIT: DEVICE LIST SET TO NO ITEMS
;REGISTERS USED: HL
;*%**********~*%***%*%%~~**%%%*%***%%***%*

10D I/O DEVICE TABLE HANDLER (IOHDLR) 379

INITDL:
;INITIALIZE DEVICE LIST HEADER TO 0 TO INDICATE NO DEVICES
LD HL,O ;HEADER = 0 (EMPTY LIST)
LD (DVLST),HL
RET

;********~**********************************
;ROUTINE: ADDDL
; PURPOSE: ADD DEVICE TO DEVICE LIST
; ENTRY: REGISTER HL = ADDRESS OF DEVICE TABLE ENTRY
;EXIT: DEVICE ADDED TO DEVICE LIST
;REGISTERS USED: DE
;***********************~********************

ADDDL:
LD
LD
INC
LD
DEC
LD
RET

DE, (DVLST)
(HL),E
HL
(HL),D
HL
(DVLST),HL

;GET CURRENT HEAD OF DEVICE LIST
;STORE CURRENT HEAD OF DEVICE LIST
; INTO LINK FIELD OF NEW DEVICE

;MAKE DVLST POINT AT NEW DEVICE

;DATA SECTION
DVLST: DS 2
BDATA: DS

SAMPLE EXECUTION:

;DEVICE LIST HEADER
;DATA BYTE FOR WRITE 1 BYTE

This test routine sets up the CP/M console as
device 1 and the CP/M printer as device 2.
The routine then reads a line from the console and
echoes it to the console and the printer.

CR
LF

;CHARACTER EQUATES
EG!U ODH
EQU OAH

;CARRIAGE RETURN CHARACTER
;LINE FEED CHARACTER

E:DOS
CINP
COUTP
LOUTP
RCBUF
(:::HAT

;CP/M
EOU
EQU
EG!U
EG!U
EOU
EGlU

EGJ.UATES
oooe;iH
1
2
5
10
11

;ADDRESS OF CP/M BDOS ENTRY POINT
;BDOS CONSOLE INPUT FUNCTION
;BDOS CONSOLE OUTPUT FUNCTION
;BDOS LIST OUTPUT FUNCTION
;BDOS READ CONSOLE BUFFER FUNCTION
;BDOS CONSOLE STATUS FUNCTION

sel0D:
;INITIALIZE DEVICE LIST, POINT TO IOCB
CALL INITDL ;INITIALIZE DEVICE LIST
LD IX,IOCB ;POINT TO 10CB

;5ET UP CONSOLE AS DEVICE 1 AND INITIALIZE IT

380 INPUT/OUTPUT

LD HL,CONDV ;POINT TO CONSOLE DEVICE ENTRY
CALL ADDDL ;ADD CONSOLE TO DEVICE LIST
LD (IX+IOCBOP),INIT ;INITIALIZE OPERATION
LD (IX+IOCBDN),l ;DEVICE NUMBER = 1
CALL IOHDlR ;INITIALIZE CONSOLE

;SET UP PRINTER AS DEVICE 2 AND INITIALIZE IT
LD HL,PRTDV ;POINT TO PRINTER DEVICE ENTRY
CALL ADDDL ;ADD PRINTER TO DEVICE LIST
LD (IX+IOCBOP),INIT ;INITIALIZE OPERATION
LD (IX+IOCBDN),2 ;DEVICE NUMBER = 2
CALL IOHDLR ;INITIALIZE PRINTER

;LOOP READING LINES FROM CONSOLE, AND ECHOING THEM TO
; CONSOLE AND PRINTER UNTIL A BLANK LINE IS ENTERED

TSTLP:
LD (IX+IOCBDN),l ;DEVICE NUMBER = 1 (CONSOLE)
LD (IX+IOCBOP),RNBYTE ;OPERATION IS READ N BYTES
LD Hl,LENBUF
LD (IOCB+IOCBBL),HL ;SET BUFFER LENGTH TO LENBUF
CALL IOH[~R ;READ A LINE

;OUTPUT LINE FEED TO CONSOLE
LD (IX+IOCBOP),W1BYTE ;OPERATION IS WRITE 1 BYTE
LD A,LF ;CHARACTER IS LINE FEED
CALL IOHDLR ;WRITE 1 BYTE (LINE FEED)

;ECHO LINE TO DEVICE AND 2
LD A,l
CALL ECHO ;ECHO LINE TO DEVICE
LD A,2
CALL ECHO ; ECHO LINE TO DEVICE 2

;STOP IF LINE LENGTH IS 0
LD HL,(IOCB+IOCBBL) ;6ET LINE LENGTH
LD A,H ;TEST LINE LENGTH
OR L
JR NZ,TSTLP ;CONTINUE IF LENGTH NOT ZERO

,JR SC10D ;AGAIN

ECHO:
;OUTPUT LINE
LD (IX+IOCBDN),A ;SET DEVICE NUMBER IN IOCB

;NOTE THAT ECHO WILL SEND A LINE
; TO ANY DEVICE. THE DEVICE NUMBER
; IS IN THE ACOJMULATOR

LD (IX+IOCBOP),WNBYTE ;SET OPERATION TO WRITE N BYTES
CALL IOHDLR ;WRITE N BYTES

; OUTPUT
LD
LD
CALL
LD
CALL

CARRIAGE RETURN/LINE FEED
(IX+IOCBOP),W1BYTE ;SET OPERATION TO WRITE 1 BYTE
A,CR ;CHARACTER IS CARRIAGE RETURN
IOHDLR ;WRITE 1 BYTE
A,LF ;CHARACTER IS LINE FEED
IOHDLR ;WRITE 1 BYTE

10D I/O DEVICE TABLE HANDLER (IOHDLR) 381

RET

IOCB:
iIOCB
DS
DS
DS
DW
DS

FOR PERFORMING
1
1
1
BUFFER
2

I/O
iDEVICE NUMBER
iOPERATION NUMBER
iSTATUS
; BUFFER ADDRE~:;S

iBUFFER LENGTH

iBUFFER
LENBUF EQU 127
BUFFER: DS LENBUF

CONDV:
iDEVICE
DW
DB
DW
DW
DW
DW
OW
DW
DW

TABLE ENTRIES
o
1
CINIT
CISTAT
CIN
CINN
COSTAT
COUT
COUTN

;LINK FIELD
iDEVICE 1
iCONSOLE INITIALIZE
iCONSOLE INPUT STATUS
;CONSOLE INPUT 1 BYTE
iCONSOLE INPUT N BYTES
iCONSOLE OUTPUT STATUS
;CONSOLE OUTPUT 1 BYTE
iCONSOLE OUTPUT N BYTES

PRTDV: OW
DB
DW
OW
DW
OW
DW
DW
OW

o
2
PINIT
o
(l

(l

POSTAT
POUT
POUTN

iLINK FIELD
iDEVICE 2
iPRINTER INITIALIZE
;NO PRINTER INPUT STATUS
;NO PRINTER INPUT 1 BYTE
;NO PRINTER INPUT N BYTES
;PRINTER OUTPUT STATUS
iPRINTER OUTPUT 1 BYTE
;PRINTER OUTPUT N BYTES

;**********-**-*-***-******************-*
;CONSOLE I/O ROUTINES
i********-*-**-*****-********-**-**-*******

iCONSOLE INITIALIZE
CINIT:

SUB
RET

A iSTATUS = NO ERRORS
iNO INITIALIZATION NECESSARY

iCONSOLE INPUT STATUS

CIS1:

PUSH
LD
CALL
POP
OR
..JR
LD
LD
RET

IX
C, C:;TAT
BDOS
IX
A
Z,CISl
A,DEVRDY
(I X+IOCBS:T,), A

iSAVE IOCB ADDRESS
iBDOS CONSOLE STATUS FUNCTION
iGET CONSOLE STATUS
;RESTORE IOCB ADDRESS

..JUMP IF NOT READY
INDICATE CHARACTER READY
STORE STATUS AND LEAVE IT IN REGISTER A

382 INPUT/OUTPUT

;CONSOLE READ BYTE
CIN:

PUSH
LD
CALL
POP
RET

IX
C, CINP
BDOS
IX

;SAVE IX
;BDOS CONSOLE INPUT FUNCTION
;READ 1 BYTE FROM CONSOLE
;RESTORE IX

.JR
LD
RET

PUSH
LD
SUB

CINN:
;CONSOLE READ N BYTES

;READ LINE USING BOOS READ CONSOLE BUFFER FUNCTION
;BDOS READ CONSOLE BUFFER FUNCTION USES THE FOLLOWING BUFFER FORMAT:

BYTE 0: BUFFER LENGTH (MAXIMUM NUMBER OF CHARACTERS)
BYTE 1: NUMBER OF CHARACTERS READ (LINE LENGTH)
BYTES 2 ON: ACTUAL CHARACTERS

IX ;SAVE BASE ADDRESS OF IOCB
A, (IX+IOCBBL) ;GET BUFFER LENGTH
3 ;BUFFER MUST BE AT LEAST 3 CHARACTERS

; TO ALLOW FOR MAXIMUM LENGTH AND COUNT
; USED BY BDOS READ CONSOLE BUFFER

NC,CINN1 ;JUMP IF BUFFER LONG ENOUGH
(IX+IOCBST),BU~ERR ;SET ERROR STATUS - BUFFER TOO SMALL

READ

;ADD ONE BA(~ TO DETERMINE HOW MUCH
; SPACE IS AVAILABLE IN BUFFER FOR DATA
;GET BUFFER ADDRESS FROM IOCB

;SAVE BUFFER ADDRESS
;SET MAXIMUM LENGTH IN BUFFER
;BDOS READ CONSOLE BUFFER FUNCTION
;READ BUFFER

CHARACTERS READ IN THE IOCB
;RESTORE BUFFER ADDRESS
;RESTORE BASE ADDRESS OF IOCB
;POINT TO NUMBER OF CHARACTERS
;GET NUMBER OF CHARACTERS READ
;SET BUFFER LENGTH IN IOCB
; WITH UPPER BYTE = 0

A

E, (IX+IOCBBA)
D, (IX+IOCBBA+1)
DE
(DE),A
C,RCBUF
BDOS

NUMBER OF
HL
IX
HL
A, (HL)
(IX+IOCBBL),A
(IX+IOCBBL+1),O

INC

LD
LD
PUSH
LD
LD
CALL

; RETURN
POP
POP
INC
LD
LD
LD

CINN1 :

;MOVE DATA TO FIRST BYTE OF BUFFER
;DROPPING OVERHEAD (BUFFER LENGTH, LINE LENGTH)
; RETURNED BY CP/M. LINE LENGTH IS NOW IN THE IOCB
OR A ;TEST LINE LENGTH
RET Z ;RETURN IF LENGTH WAS 0

LD C,A
LD B,O
LD D,H
LD E,L
INC HL

DEC DE
LDIR
SUB A

;BC = NUMBER OF BYTES

;POINT TO START OF BUFFER + 1

;HL = SOURCE = FIRST BYTE OF DATA
; 2 BYTES BEYOND START
;DE = DESTINATION (FIRST BYTE OF BUFFER)
;MOVE DATA DOWN 2 BYTES IN BUFFER
;STATUS = NO ERRORS

10D I/O DEVICE TABLE HANDLER (IOHDLR) 383

RET

;CONSOLE OUTPUT STATUS
COSTAT:

LD
RET

A,DEVRDY ; STATUS ALWAYS READY TO OUTPUT

;CONSOLE OUTPUT 1 BYTE

;CONSOLE OUTPUT N BYTES

COUT:

COUTN:

PUSH
LD
LD
CALL
POP
SUB
RET

LD
CALL
SUE:
RET

IX
C,COUTP
E,A
BDOS
IX
A

HL,COUT
OUTN
A

;SAVE IX
;BDOS CONSOLE OUTPUT OPERATION
;E = CHARACTER
;OUTPUT 1 BYTE
;RESTORE IX
; RETURN, NO ERRORS

;HL POINTS TO OUTPUT CHARACTER ROUTINE
;CALL OUTPUT N CHARACTERS
;STATUS = NO ERRORS

;***************************************
;PRINTER ROUTINES
;***************************************

;PRINTER INITIALIZE
PINIT:

SUE:
RET

A ;NOTHING TO DO, RETURN NO ERRORS

;PRINTER OUTPUT STATU~3

POSTAT:
LD A,DEVRDY ; STATUS ALWAYS READY TO OUTPUT
RET

;PRINTER OUTPUT 1 BYTE
POUT:

PUSH IX ; SAVE IX
LD C,LOUTP ;BDOS LIST OUTPUT FUNCTION
LD E,A ;E = CHARACTER
CALL BDO:=; ; OUTPUT TO PRINTER
POP IX ; RESTORE IX
SUB A ; STATUS = NO ERf~ORS

RET

;PRINTER OUTPUT N BYTES
POUTN:

LD HL,POUT HL = ADDRESS OF OUTPUT ROUTINE
CALL OUTN OUTPUT N CHARACTERS
SUB A NO ERRORS
RET

384 INPUT/OUTPUT

;***
;ROUTINE: OUTN
; PURPOSE: OUTPUT N CHARACTERS
; ENTRY: REGISTER HL CHARACTER OUTPUT SUBROUTINE ADDRESS

REGISTER IX = BASE ADDRESS OF AN IOCB
;EXIT: DATA OUTPUT
; REGI STERS USED: AF, Be, HL
;**

OUTN:
;STORE ADDRESS OF CHARACTER OUTPUT SUBROUTINE
LD l. COSR), HL ; SAVE ADDRESS

;GET NUMBER OF BYTES, EXIT IF LENGTH IS (I

; BC NUMBER OF BYTES
LD C,(IX+IOCBBL) ;BC = BUFFER LENGTH
LD B, l. IX+IOCBBL+1)
LD A,B ;TEST BUFFER LENGTH
OR C
RET Z ;EXIT IF BUFFER EMPTY

;GET OUTPUT BUFFER ADDRESS FROM IOCB
; HL BUFFER ADDRESS
LD L,l.IX+IOCBBA) ;HL = BUFFER ADDRESS
LD H,(IX+IOCBBA+l)

OUTLP:
LD A, (HL)
PUSH HL
PUSH BC
CALL. DO~;UB

POP BC
POP HL
INC HL
DEC BC
LD A,B
OR C
.JR NZ,OUTLP
RET

DOSUB: LD HL,(COSR)
,JP l.HL)

COSR: DW (I

END

;SAVE BUFFER POINTER, COUNT

;OUTPUT CHARACTER
;RESTORE COUNT, BUFFER POINTER

;POINT TO NEXT CHARACTER
;DECREMENT AND TEST COUNT

;CONTINUE UNTIL COUNT = 0

;GOTO ROUTINE

;ADDRESS OF CHARACTER OUTPUT SUBROUTINE

Initialize I/O Ports (IPORTS) 10E

Initializes a set of 110 ports from an array of
port device addresses and data values. Examples
are given of initializing the common Z80 program
mable 110 devices: CTC, PIO, and SIO.

This subroutine is a generalized method for
initializing 110 sections. The initialization may
involve data ports, data direction registers that
determine whether bits are inputs or outputs,
control or command registers that determine the
operating modes of programmable devices, count
ers (in timers), priority registers, and other ex
ternal registers or storage locations.

Tasks the user may perform with this routine
include:

I. Assigning bidirectional 110 lines as inputs
or outputs

2. Initializing output ports

3. Enabling or disabling interrupts from
peripheral chips

4. Determining operating modes, such as
whether inputs are latched, whether strobes
are produced, how priorities are assigned,
whether timers operate continuously or only on
demand, etc.

5. Loading starting values into timers and
counters

6. Selecting bit rates for communications

7. Clearing or resetting devices that are not
tied to the overall system reset line

8. Initializing priority registers or assigning

Entry Conditions

Base address of initialization array in HL

Registers Used: AF, Be, DE, HL

Execution Time: 22 cycles overhead plus 46+21 * N
cycles for each port, where N is the number of bytes
sent.

Program Size: II bytes plus the size of the table (at
least 3 bytes per port plus I byte for a terminator)

Data Memory Required: None

initial priorities to interrupts or other opera
tions

9. Initializing vectors used in servicing
interrupts, DMA requests, and other inputs.

Procedure: For each port, the program obtains
the number of bytes to be sent and the device
address. It then sends the data values to the port
using a repeated block output instruction. This
approach does not depend on the number or
type of devices in the 110 section. The user may
add or delete devices or change the initialization
by changing the array rather than the program.
Each entry in the array consists of a series of
byte-length elements in the following order:

l. Number of bytes to be sent to the port

2. 8-bit device address for the port

3. Data bytes in sequential order.

The array ends with a terminator that has 0 in
its first byte.

Note that an entry may consist ofan arbitrary
number of bytes. The first element determines
how many bytes are sent to the device address in
the second element. The subsequent elements
contain the data values. The terminator need
consist only of a single 0 byte.

Exit Conditions

All data values sent to appropriate ports

385

386 INPUT/OUTPUT

Example

1. Data: Array elements are
3 (number of bytes for port 1)

Port 1 device address, first value, second
value, third value

2 (number of bytes for port 2)
Port 2 device address, first value, second
value

4 (number of bytes for port 3)
Port 3 device address, first value, second
value, third value, fourth value

o (terminator)

Result: Three values sent to port l's device address
Two values sent to port 2's device address
Four values sent to port 3's device address

Title
Name:

Enh-y:

Initialize I/O Ports
IPORTS

Initialize 1/0 ports from an array of port
addresses and values

Register pair HL = Base address of array

The array consists of byte-length elements
in the following order: number of bytes to
be sent to the port, port device address, data
values for the port. This sequence is repeated ;
for any number of ports. The array is terminated;
by an entry with 0 in the number of bytes.

array+O Number of bytes for this port
array+l Port device address
array+2 = First value for this port

E>: it:

array+2+(N-l)

N,::.ne

Last value for this port

Registers used: AF,BC,DE,HL

Time: 22 cycles overhead plus 46 + (N * 21) cycles for;
each port, where N is the number of bytes sent

10E INITIALIZE I/O PORTS (IPORTS) 387

Program 11 bytes

IPORT~:;:

;GET NUMBER OF DATA BYTES TO SEND TO CURRENT PORT
;EXIT IF NUMBER OF BYTES IS 0, INDICATING TERMINATOR
LD A, (HL) ;GET NUMBER OF BYTES
OR A ;TEST FOR ZERO (TERMINATOR)
RET Z ;RETURN IF NUMBER OF BYTES = 0
LD B,A I

INC HL ;POINT TO PORT ADDRESS (NEXT BYTE)

;C = PORT ADDRESS
;HL ADDRESS OF DATA TO OUTPUT
LD C, (HL) ;OET PORT ADDR~SS
INC HL ;POINT TO FIRST DATA VALUE (NEXT BYTE)

;OUTPUT DATA AND CONTINUE TO NEXT PORT
OTIR ;SEND DATA VALUES TO PORT
JR IPORTS ;CONrINUE TO NEXT PORT ENTRY

SAMPLE EXECUTION:

;INITIALIZE
ZSO CTC (PROGRAMMABLE TIMER/COUNTER)
ZSO SIO (PROGRAMMABLE SERIAL INTERFACE)
ZSO PIO (PROGRAMMABLE PARALLEL INTERFACE)

;ARBITRARY PORT ADDRESSES
; CTC PORT ASSIGNMENTS

CTeo EG~U 70H ; CTC CHANNEL 0
CTCI EQU 71H ;CTC CHANNEL 1
CTC2 E@j 72H ; CTC CHANNEL 2
CTC3 EQU 73H ;CTC CHANNEL 3

; SIO PORT ASSIGNMENTS
SIOCAD EOU SOH ;SIO CHANNEL A DATA
SIOCBD EGJ.U 81H ;SIO CHANNEL B DATA
8IOCAS EOU :32H ; SIO CHANNEL A COMMANDS/STATUS
SIOCBS EGJ.U 83H ;SIO CHANNEL B COMMANDS/STATUS

; PIO PORT ASSIGNMENTS
PIOAD EGJ.U OFOH ;PIO PORT A DATA
PIOBD EG~U OF1H ;PIO PORT B DATA
PIOAC EGJ.U OF2H ;PIO PORT A CONTROL
PIOBC EOU OF3H ;PIO PORT B CONTROL

SIOIV
INTERRUPT VECTORS

EG!U OCOH ;810 INTERRUPT VECTOR

388 INPUT/OUTPUT

PIOIVA EGJ.U ODOH
PIOIVB EQU OD2H

8CI0E:
LD HL,PINIT
CALL IPORTS

..JR SCI0E

PINIT:

;PIO PORT A INTERRUPT VECTOR
;PIO PORT B INTERRUPT VECTOR

;POINT TO INITIALIZATION ARRAY
;INITIALIZE PORTS

;INITIALIZE zao CTC CHANNEL 0
RESET CHANNEL
OPERATE CHANNEL IN COUNTER MODE, DECREMENTING DOWN COUNTER

AFTER EACH POSITIVE (RISING) EDGE ON CLOCK INPUT.
SET INITIAL TIME CONSTANT TO 26 CLOCK CYCLES.
NOTE: CTC RELOADS TIME CONSTANT REGISTER INTO DOWN COUNTER

AUTOMATICALLY AFTER EACH COUNTDOWN TO 0.

THIS INITIALIZATION PRODUCES AN SIO CLOCK FOR 9600 BAUD
TRANSMISSION.

IT ASSUMES 4 MHZ CLOCK INPUT TO PIN 23, SO A COUNT OF
4,000,000/(16*9600) = 26 WILLL GENERATE A 153,600
(16*9600) HZ SQUARE WAVE ON PIN 7 FOR SIO PINS 13 AND 14.

; SIO IS OPERATING IN DIVIDE BY 16 MODE.
DB 2 ; OUTPUT TWO BYTES
DB CTCO ;DESTINATION IS CHANNEL CONTROL REGISTER
DB 01010111B ; BIT 0 1 (WRITE CHANNEL CONTROL WORD)

;8IT 1 1 (RESET CHANNEL)
;BIT :2 1 (TIME CON::nANT FOLLOWS)
; BIT 3 0 (NOT U::::ED IN COUNTER MODE)
;BIT 4 1 (DECREMENT COUNTER ON
; POSITIVE CLOCK EDGE)
;BIT 5 ° (NOT USED IN COUNTER MODE)
;BIT 6 1 (COUNTER MODE)
;BIT 7 0 (NO INTERRUPT)

DB 2<:- ;TIMER COUNTDOWN VALUE FOR 9600 BAUD

;INITIALIZE zao SIO CHANNEL A FOR ASYNCHRONOUS SERIAL I/O.
SET INTERRUPT VECTOR (ALWAYS IN CHANNEL B) TO SIOIV
NO PARITY, 2 STOP BITS, 16 TIMES CLOCK.
RECEIVE AND TRANSMIT a BITS/CHAR, NO SPECIAL CONTROLS.
ENABLE TRANSMIT INTERRUPT, RECEIVE INTERRUPTS ON ALL CHARS;
PARITY OR STATUS DOES NOT AFFECT INTERRUPT VECTORS.

,
DB
DB
DB
DB

DB
DB

SET INTERRUPT VECTOR
2 ; OUTPUT TWO BYTES
SIOCBS ;DESTINATION IS COMMAND REGISTER B
000000108 ;SELECT WRITE REGISTER 2
SIOIV ;SET INTERRUPT VECTOR FOR SIO

INITIALIZE CHANNEL A
9 ;OUTPUT NINE BYTES
SIOCAS ;DESTINATION IS COMMAND REGISTER A

DB
RESET THE
00011000B

1DE INITIALIZE I/O PORTS (IPORTS) 389

CHANNEL
;SELECT WRITE REGISTER 0
;BITS 2,1,0 0 (WRITE REGISTER 0)
;BITS 5,4,3 = 011 (CHANNEL RESET)
;BITS 7,6 = 0 (DO NOT CARE)

,
DB
DB

,
DB
DB

DB
DB

INITIALIZE
NO PARITY,
O(l000100B
01001100B

INITIALIZE
8 BITS PER
00000011B
11100001B

INITIALIZE
8 BITS PER
00000101B
11101010B

BAUD RATE CONTROL
2 STOP BITS, 16 TIMES CLOCK

;SELECT WRITE REGISTER 4
;BIT 0 = 0 (NO PARITY)
;BIT 1 = 0 (DON~T CARE)
;BITS 3,2 = 11 (2 STOP BITS)
;BITS 5,4 = 00 (DON~T CARE)
;BITS 7,6 = 01 (16 TIMES CLOCK)

RECEIVE CONTROL
CHARACTER, ENABLE RECEIVER, NO AUTO ENABLE

;SELECT WRITE REGISTER 3
;BIT 0 = 1 (RECEIVE ENABLE)
;BITS 4,3,2,1 = 0 (DON~T CARE)
;BIT 5 = 0 (NO AUTO ENABLE)
;BIT 7,6 = 11 (RECEIVE 8 BITS/CHAR)

TRANSMIT CONTROL
CHARACTER, ENABLE TRANSMIT, NO BREAK OR CRC

;SELECT WRITE REGISTER 5
;BIT 0 0 (NO CRC ON TRANSMIT)
:8IT 1 1 (REQUEST TO SEND)
;BIT 2 = 0 (DON~T CARE)
;BIT 3 = 1 (TRANSMIT ENABLE)
;8IT 4 = 0 (DO NOT SEND BREAK)
;BITS 6,5 = 11 (TRANSMIT 8 BITS/CHAR)
;8IT 7 = 1 (DATA TERMINAL READY)

;INITIALIZE INTERRUPT CONTROL
RESET INTERRUPTS FIRST
ENABLE TRANSMIT INTERRUPT, RECEIVE INTERRUPTS ON ALL CHARS

DB

DB

NEITHER STATUS
DO NOT CONTROL
00010001B

00011010B

NOR PARITY ERRORS AFFECT INTERRUPT VECTOR
THE WAIT/READY OUTPUT LINE

;SELECT WRITE REGISTER 1 AND
; RESET EXTERNAL/STATUS INTERRUPTS
;BIT 0 0 (NO EXTERNAL INTERRUPTS)
;BIT 1 = 1 (ENABLE TRANSMIT INTERRUPT)
;BIT 2 = 0 (STATUS DOES NOT AFFECT

VECTOR)
;BITS 4,3 = 11 (RECEIVE INTERRUPTS ON

ALL CHARS, PARITY DOES NOT
, AFFECT VECTOR)
;BITS 7,6,5 = 000 (NO WAIT/READY

FUNCTION)

,
DB
DB
DB

TRANSMIT A NULL BYTE TO START INTERRUPT PROCESSING
1 ;OUTPUT 1 BYTE
SIOCAD ;DESTINATION IS CHANNEL A DATA
o ;NULL CHARACTER (00 HEX)

390 INPUT/OUTPUT

;INITIALIZE Z80 PIO
PORT A - INPUT PORT WITH INTERRUPT ENABLED
PORT B - CONTROL PORT WITH INTERRUPT ENABLED. AN INTERRUPT IS

GENERATED IF ANY OF BITS 0, 4, OR 7 BECOME 1

DB
DB
DB
DB

DB

DB
DB
DB
DB

DB

DB

INITIALIZE PIO

PIOAC
PIOIVA
10001111B

10000111B

INITIALIZE PIO
4
PIOBC
PIOIVB
11001111B

10110111B

10010001B

PORT A
;OUTPUT 3 BYTES
;DESTINATION IS PORT A CONTROL
;SET INTERRUPT VECTOR FOR PORT A
;BITS 3,2,1,0 = 1111 (MODE SELECT)
;BITS 5,4 = 00 (DON~T CARE)
;BITS 7,6 = 01 (INPUT MODE)
;BITS 3,2,1,0 = 0111 (INTERRUPT CONTROL)
;BITS 6,5,4 = 000 (DON'T CARE)
;BITS 7 1 (ENABLE INTERRUPTS)

PORT B
;OUTPUT 4 BYTES
;DESTINATION IS PORT B CONTROL
;SET INTERRUPT VECTOR FOR PORT B
;BITS 3,2,1,0 = 1111 (MODE SELECT)
;BITS 5,4 = 00 (DON'T CARE)
;BITS 7,6 = 11 (CONTROL MODE)
;BITS 3,2,1,0 = 0111 (INTERRUPT CONTROL)
;BIT 4 = 1 (MASK FOLLOWS)
;BIT 5 = 1 (ACTIVE STATE ON MONITORED
; INPUT LINES IS 1 FOR AN INTERRUPT)
;BIT 6 = 0 (INTERRUPT IF ANY OF THE
; MONITORED INPUT LINES IS ACTIVE)
;BIT 7 = 1 (ENABLE INTERRUPTS)
;MONITOR INPUT BITS 0, 4, AND 7
; FOR INTERRUPTS

END OF PORT INITIALIZATION DATA
DB 0 ; TERMINATOR

END

Delay Milliseconds (DELAY) 10F

Provides a delay of between I and 256 milli
seconds, depending on the parameter supplied.
A parameter value of0 is interpreted as 256. The
user must calculate the value CPMS (cycles per
millisecond) to fit a particular computer. Typical
values are 2000 for a 2 MHz clock, 4000 for a
4 MHz clock, and 6000 for a 6 MHz clock.

Procedure: The program simply counts down
register B for the appropriate amount of time as
determined by the user-supplied constant. Extra

Entry Conditions

Number of milliseconds to delay (1 to 256) in A

Example

Registers Used: AF

Execution Time: I ms * (A)

Program Size: 51 bytes

Data Memory Required: None

Special Case: (A) = 0 causes a delay of 256 ms

instructions account for the CALL instruction,
RET instruction, and routine overhead without
changing anything.

Exit Conditions

Returns after the specified delay with (A) = 0

I. Data:
Result:

(A)= number of milliseconds = 2A I6 (42 10)

Software delay of 2A I6 milliseconds, with
proper CPMS supplied by user

Title
Name:

Delay milliseconds
Delay

F'Ut"PC1se:

Entry:

De I ay ft"om

Reg i stet" A

to 256 milliseconds

Number of milliseconds to delay
A 0 equals 256 milliseconds

E>d t: Returns to calling routine after the
specified delay

391

392 INPUT/OUTPUT

Registers used: AF

Time: 1 millisecond * Register A.

Program 51 bytes

CF'MS

; EQUATES
;CYCLES PER MILLISECOND - USER-SUPPLIED
EQU 4000 ;2000 2 MHZ CLOCK

;4000 4 MHZ CLOCK
;6000 6 MHZ CLOCK

DELAY
BC
DLY
A
Z
B,(CPMS/I00)-1
Be
A, (DELAY)

CALL
PUSH
CALL
DEC
RET
LD
POP
LD
RET

; METHOD:
THE ROUTINE IS DIVIDED INTO 2 PARTS. THE CALL TO
THE "DLY" ROUTINE DELAYS EXACTLY 1 LESS THAN THE
REQUIRED NUMBER OF MILLISECONDS. THE LAST ITERATION
TAKES INTO ACCOUNT THE OVERHEAD TO CALL "DELAY" AND
"DLY". THIS OVERHEAD IS:

17 CYCLES ;;;::=)

11 CYCLES ==)
17 C:YCI._E~: ===>
4 CYCLES ==)

11 CYCLES ==>
7 CYCLES ==>

10 CYCLES ==)
13 CYCLES 9=>
10 C:YC:LE~:; ==>

DELAY:
100 CYCLES OVERHEAD

;DO ALL BUT THE LAST MILLISECOND
;17 CYCLES FOR THE USER'S CALL

PUSH BC ;11 CYCLES
CALL DLY ;32 CYCLES TO RETURN FROM DLY

;DO 2 LESS THAN 1 MILLISECOND FOR OVERHEAD
LD B,+(CPMS/50)-2;7 CYCLES

; 67 CYCLE~;

LDLP:

LDLY1 :
LDLY2:
LDLY:3:

.JP

.JP

.JP
ADD
D.JNZ

LDLYl
LDLY2
LDLY3
A,O
LDLF'

;10 CYCLES
; 10 CYCLE~3

;10 CYCLES
;7 CYCLES
;13 CYCLES

;50 CYCLES

;EXIT IN 33 CYCLES
POP BC
LD A, (DELAY)

; 10 CYCLES
; 13 CYCLES

RET 10 CYCLES

33 CYCLE::;

1OF DELAY MILLISECONDS 393

:~~~~*~~**~*~****~****~*~~~~*

;ROUTINE: DlY
; PURPOSE: DELAY All BUT lAST MILLISECOND
;ENTRY: REGISTER A = TOTAL NUMBER OF MILLISECONDS
;EXIT: DELAY ALL BUT lAST MIllISECOND
;REGISTERS USED: AF,BC,HL
;*****~**************~~****~*

DlY:
DEC
RET
lD

A
Z
B,+(CPMS/50)-1

;4 CYCLES
;5 CYCLES (RETURN WHEN DONE 11 CYCLES)
;7 CYCLES

; 16 CYCLES

DlP:
,...IP DlY1 ; 10 CYCLES

DlY1 ,...IP DlY2 ;10 CYCLES
DlY2 ,...IP DlY3 ;10 CYCLES
DlY3 ADD A,O ;7 CYCLES

D.JNZ DlP ; 13 CYCLES
,
;50 CYCLES

;EXIT IN 34 CYClE~:;

..,IF' DlY4 ;10 CYCLE:::;
DlY4: ,...IP DlY5 ;10 CYCLES
DlY5: NOP ;4 CYCLES

,JP DlY ; 10 CYCLES
,
:34 CYCLES

SAMPLE EXECUTION:

SC10F:

;DElAY 10 SEOJNDS
CALL DELAY 40 TIMES AT 250 MILLISECONDS EACH

lD B,40 ;40 TIMES (28 HEX)
G!TRSCD:

lD
CAll
D,JNZ

A,250
DELAY
G!TRSCD

;250 MIllISECONDS (FA HEX)

;CONTINUE UNTIL DONE

,JR SCI0F

END

Unbuffered Input/Output
Using an SIO (SINTIO) 11A

Performs interrupt-driven input and output
using an SIO and single-character input and
output buffers. Consists of the following sub
routines:

1. INCH reads a character from the input
buffer.

2. INST determines whether the input buffer
is empty.

3. OUTCH writes a character into the output
buffer.

4. OUTST determines whether the output
buffer is full.

5. INIT initializes the SIO, the interrupt
vectors, and the software flags. The flags are
used to manage data transfers between the main
program and the interrupt service routines.

The actual service routines are

1. RDH DLR responds to the input interrupt
by reading a character from the SIO into the
input buffer.

2. WRHDLR responds to the output interrupt
by writing a character from the output buffer
into the SIO.

Procedures

I. INCH waits for a character to become
available, clears the Data Ready flag (RECDF),
and loads the character into the accumulator.

2. INST sets Carry from the Data Ready flag
(RECDF).

3. OUTCH waits for the output buffer to
empty, stores the character in the buffer, and
sets the Character Available flag (TRNDF). If
no output interrupt is expected (i.e., the interrupt

394

Registers Used:

I. INCH: AF

2. INST: AF

.1 OUTCH: AF

4. OUTST: AF

5. INIT: AF, BC, HL, I

Execution Time:

I. INCH: 72 cycles if a character is available

2. INST: 27 cycles

.3. OUTCH: 150 cycles if the output buffer is not
full and an output interrupt is expected; 75 additional
cycles to send the data to the SIO if no output
interrupt is expected.

4. OUTST: 27 cycles

5. INIT: 618 cycles

6. RDHDLR: 82 cycles

7. WRHDLR: 160 cycles

Program Size: 202 bytes

Data Memory Required: 5 bytes anywhere in
RAM for the received data (address RECDAT),
Receive Data flag (address RECDF), transmit data
(address TRNDAT), Transmit Data flag (address
TRNDF), and Output Interrupt Expected flag ad
dress OlE)

has been reset because it occurred when no
data was available), OUTCH sends the data to
the SIO immediately.

4. OUTST sets Carry from the Character
Available flag (TRNDF).

5. INIT clears the software flags, sets up the
interrupt vectors, and initializes the SIO by
placing the appropriate values in its control
registers. See Subroutine IOE for more details
about initializing SIOs.

6. RDHDLR reads the data, saves it in the
input buffer, and sets the Data Ready flag
(RECDF).

11A UNBUFFERED INPUT/OUTPUT USING AN SIO (SINTIO) 395

7. WRHDLR determines whether data is
available. If not, it simply resets the output
interrupt. Ifdata is available, the program sends
it to the SIO and clears the Character Available
flag (TRNDF).

The special problem here is that an output
interrupt may occur when no data is available.
It cannot be ignored or it will assert itself
indefinitely, causing an endless loop. The solution
is simply to reset the SIO's transmit interrupt
without sending any data.

But now a new problem arises when output
data becomes available. That is, since the
interrupt has been reset, it obviously cannot
inform the system that the SIO is ready to
transmit. The solution is to have a flag that
indicates (with a 0 value) that the output
interrupt has occurred without being serviced.
This flag is called OlE (Output Interrupt
Expected).

Entry Conditions

1. INCH: none

2. INST: none

3. OUTCH: character to transmit in A

4. OUTST: none

5. INIT: none

The initialization routine clears OlE (since
the SIO surely starts out ready to transmit). The
output service routine clears it when an output
interrupt occurs that cannot be serviced (no
data is available) and sets it after sending data to
the SIO (in case it might have been cleared).
Now the output routine OUTCH can check OlE
to determine whether an output interrupt is
expected. If not, OUTCH simply sends the data
immediately.

Note that an SIO interrupt can be reset
without actually sending any data. This is not
possible with a PIO (see Subroutine 11 B), so the
procedure there is slightly different.

Unserviceable interrupts occur only with
output devices, since input devices always have
data ready to transfer when they request service.
Thus, output devices cause more initialization
and sequencing problems in interrupt-driven
systems than do input devices.

Exit Conditions

1. INCH: character in A

2. INST: Carry = 0 if input buffer empty, I if
full

3. OUTCH: none

4. OUTST: Carry = 0 if output buffer empty,
I if full

5. INIT: none

Title

Name:

Simple interrupt input and output using an SIO
and single character buffers
SINTIO

396 INTERRUPTS

Purpose:

EntrY:

This program consists of 5 subroutines which
perform-interrupt driven input and output using
an SIO.

INCH
Read a character

INST
Determine input status (whether input
buffer is empty)

OUTCH
Write a character

OUTST
Determine output status (whether output
buffer is fulU

INIT
Initialize SIO and interrupt system

INCH
No parameters

INST
No pat" ame t er s

OUTCH
Register A = character to transmit

OUTST
No parameters

INIT
No parameters

Exit: INCH
Register A = character

INST
Carry = 0 if input buffer is empty,
1 if character is available

OUTCH
No parameters

OUTST
Carry = 0 if output buffer is not
full, 1 if it is full

INIT
No parametet"s

Registers used: INCH - AF
INST - AF
OUTCH - AF
OUTST - AF
INIT - AF,BC,HL,I

Time: INCH
72 cycles if a character is available

INST
27 cycles

11A UNBUFFERED INPUT/OUTPUT USING AN SIO (SINTIO) 397

OUTCH
150 cycles if output buffer is not full

and output interrupt is expected
OUTST

27 cycles
INIT

618 cycles
RDHDLR

82 cycles
WRHDLR

160 cycles

Size: Program 202 bytes
Data 5 bytes

ADDRESSES
~SIO CHANNEL A DATA
~SIO CHANNEL B DATA
~SIO CHANNEL A COMMANDS/STATUS
~SIO CHANNEL B COMMANDS/STATUS
~INTERRUPT VECTOR
:SIO CHANNEL A WRITE INTERRUPT VECTOR
~SIO CHANNEL A EXTERNAL/STATUS INTERRUPT
~ VECTOR
~SIO CHANNEL A READ INTERRUPT VECTOR
~SIO CHANNEL A SPECIAL RECEIVE INTERRUPT
~ VECTOR

SIOIV+12
SIOIV+14

EQU
EQU

~SIO EQUATES
SIO IS PROGRAMMED FOR:

ASYNCHRONOUS OPERATION
16 X BAUD RATE
8-BIT CHARACTERS

~ 1 1/2 STOP BITS
;ARBITRARY SIO PORT
EQU 1CH
EQU 1EH
EQU 1DH
EQU 1FH
EQU 8000H
EQU SIOIV+8
EQU SIOIV+10

SIORV
SIOSV

SIOCAD
SIOCBD
SIOCAS
SIOCBS
SIOIV
SIOWV
SIOEV

~READ CHARACTER
INCH:

CALL INST ~GET INPUT STATUS
....R NC,INCH ;WAIT IF NO CHARACTER AVAILABLE
DI ~DISABLE INTERRUPTS
SUB A
LD (RECDF),A ~INDICATE INPUT BUFFER EMPTY
LD A, (RECDAT) ~GET CHARACTER FROM INPUT BUFFER
EI ;ENABLE INTERRUPTS
RET

~RETURN INPUT STATUS (CARRY = 1 IF INPUT DATA IS AVAILABLE)
INST:

LD A, (RECDF) GET DATA READY FLAG
RRA SET CARRY FROM DATA READY FLAG

IF CARRY = 1, CHARACTER IS AVAILABLE
RET
~WRITE CHARACTER

398 INTERRUPTS

OUTCH:
PUSH AF ;SAVE CHARACTER TO WRITE

;WAIT FOR CHARACTER BUFFER TO EMPTY, THEN STORE NEXT CHARACTER

;GET OUTPUT STATUS
;WAIT IF OUTPUT BUFFER IS FULL
;DISABLE INTERRUPTS WHILE LOOKING AT
; SOFTWARE FLAGS
;GET CHARACTER
;STORE CHARACTER IN OUTPUT BUFFER
; INDICATE OUTPUT BUFFER FULL

;TEST OUTPUT INTERRUPT EXPECTED FLAG

;OUTPUT CHARACTER IMMEDIATELY IF
; NO OUTPUT INTERRUPT EXPECTED
;ENABLE INTERRUPTS

;GET TRANSMIT FLAG
;SET CARRY FROM TRANSMIT FLAG
; CARRY = 1 IF BUFFER FULL

A, (TRNDF)

OUTST
C,WAITOC

AF
(TRNDAT),A
A,OFFH
(TRNDF),A
A,(OIE)
A
Z,OUTDAT

CALL
.JR
DI

EI
RET

;OUTPUT STATUS (CARRY = 1 IF OUTPUT BUFFER IS FULL)

POP
LD
LD
LD
LD
OR
CALL

LD
RRA
RET

WAITOC:

OUTST:

;INITIALIZE INTERRUPT SYSTEM AND SIO
INIT:

DI ;DISABLE INTERRUPTS FOR INITIALIZATION

;NO INPUT DATA AVAILABLE
;OUTPUT BUFFER EMPTY
;NO OUTPUT INTERRUPT EXPECTED
; SIO IS READY TO TRANSMIT INITIALLY

;INITIALIZE SOFTWARE FLAGS
SUB A
LD (RECDF),A
LD (TRNDF),A
LD (OIE),A

;INITIALIZE INTERRUPT
LD A,SIOIV SHR a
LD I,A
1M 2

LD HL,RDHDLR
LD (SIORV),HL
LD HL,WRHDLR
LD (SIOWV),HL
LD HL,EXHDLR
LD (SIOEV),HL
LD HL,REHDLR
LD (SIOSV),HL

; INITIALIZE SIO
LD HL,SIOINT
CALL IPORTS
EI
RET

VECTORS
;GET INTERRUPT PAGE NUMBER
;SET INTERRUPT VECTOR IN zao
; INTERRUPT MODE 2 - VECTORS IN TABLE
; ON INTERRUPT PAGE
;STORE READ VECTOR (INPUT INTERRUPT)

;STORE WRITE VECTOR (OUTPUT INTERRUPT)

;STORE EXTERNAL/STATUS VECTOR

;STORE RECEIVE ERROR VECTOR

;GET BASE OF INITIALIZATION ARRAY
;INITIALIZE SIO
;ENABLE INTERRUPTS

11A UNBUFFERED INPUT/OUTPUT USING AN SIO (SINTIO) 399

;INPUT (READ) INTERRUPT HANDLER

;OUTPUT (WRITE) INTERRUPT HANDLER

;IF AN OUTPUT INTERRUPT OCCURS WHEN NO DATA IS AVAILABLE.
WE MUST RESET IT TO AVOID AN ENDLESS LOOP. LATER. WHEN A
CHARACTER BECOMES AVAILABLE, WE NEED TO KNOW THAT AN OUTPUT
INTERRUPT HAS OCCURRED WITHOUT BEING SERVICED. THE KEY HERE
IS THE OUTPUT INTERRUPT EXPECTED FLAG OlE. THIS FLAG IS
CLEARED WHEN AN OUTPUT INTERRUPT HAS OCCURRED BUT HAS NOT
BEEN SERVICED. IT IS ALSO CLEARED INITIALLY SINCE THE
SIO STARTS OUT READY. OlE IS SET WHENEVER DATA IS ACTUALLY
SENT TO THE SIO. THUS THE OUTPUT ROUTINE OUTCH CAN CHECK
OlE TO DETERMINE WHETHER TO SEND THE DATA IMMEDIATELY

; OR WAIT FOR AN OUTPUT INTERRUPT.
;THE PROBLEM IS THAT AN.OUTPUT DEVICE MAY REQUEST SERVICE BEFORE

THE COMPUTER HAS ANYTHING TO SEND (UNLIKE AN INPUT DEVICE
THAT HAS DATA WHEN IT REQUESTS SERVICE). THE OlE FLAG
SOLVES THE PROBLEM OF AN UNSERVICED OUTPUT INTERRUPT ASSERTING
ITSELF REPEATEDLY, WHILE STILL ENSURING THE RECOGNITION OF
OUTPUT INTERRUPTS.

;EXTERNAL/STATUS CHANGED INTERRUPT HANDLER

RDHDLR:

RDI:

WRHDLR:

NODATA:

WRDONE:

EXHDLR:

PUSH
IN
LD
LD
LD
POP
EI
RETI

PUSH
LD
RRA
dR
CALL
dR

SUB
LD
OUT
LD
OUT

POP
EI
RETI

PUSH
LD
OUT
EI

AF
A, (SIOCAD)
(RECDAT),A
A,OFFH
(RECDF),A
AF

AF
A.(TRNDF)

NC.NODATA
OUTDAT
WRDONE

A
(OIE).A
(SIOCAS),A
A,00101000B
(SIOCAS),A

AF

AF
A,00010000B
(SIOCAS).A

;SAVE AF
;READ DATA FROM SIO
;SAVE DATA IN INPUT BUFFER

;INDICATE INPUT DATA AVAILABLE
:RESTORE AF
;REENABLE INTERRUPTS

:GET DATA AVAILABLE FLAG

=dUMP IF NO DATA TO TRANSMIT
;OUTPUT DATA TO SIO

;DO NOT EXPECT AN INTERRUPT
;SELECT REGISTER 0
;RESET SIO TRANSMITTER INTERRUPT

;RESTORE AF

;RESET STATUS INTERRUPT

;DCD OR crs CHANGED STATE, OR A BREAK

400 INTERRUPTS

POP AF ; WAS DETECTED
RETI ;SERVICE HERE IF NECESSARY
;SPECIAL RECEIVE ERROR INTERRUPT

;*************************************
; ROUTINE: OUTDAT
; PURPOSE: SEND CHARACTER TO SIO
; ENTRY: TRNDAT = CHARACTER
;EXIT: NONE
;REGISTERS USED: AF
;***************************************

REHDLR:

OUTDAT:

PUSH
LD
OUT
EI
POP
RETI

LD
OUT
SUB
LD
DEC
LD
RET

AF
A,OOl10000B
(SIOCAS),A

AF

A, (TRNDAT)
(SIOCAD).A
A
(TRNDF),A
A
(OIE),A

;RESET RECEIVE ERROR INTERRUPT

;FRAMING ERROR OR OVERRUN ERROR
; OCCURRED
;SERVICE HERE IF NECESSARY

;GET DATA FROM OUTPUT BUFFER
;SEND DATA TO SIO
; INDICATE OUTPUT BUFFER EMPTY

: INDICATE OUTPUT INTERRUPT EXPECTED
; OlE = FF HEX

IPORTS:

;**************************************
; ROUTINE: IPORTS
; PURPOSE: INITIALIZE I/O PORTS
; ENTRY: HL = BASE ADDRESS OF INITIALIZATION ARRAY
;EXIT: DATA OUTPUT TO PORTS
;REGISTERS USED: AF,BC,HL
;************************************

;GET NUMBER OF DATA BYTES TO SEND TO CURRENT PORT
,EXIT IF NUMBER OF BYTES IS O. INDICATING TERMINATOR
LD A, (HL) ;GET NUMBER OF BYTES
OR A ;TEST FOR ZERO (TERMINATOR)
RET Z ;RETURN IF NUMBER OF BYTES = 0
LD B,A
INC HL ;POINT TO PORT ADDRESS (NEXT BYTE)

;C = PORT ADDRESS
;HL BASE ADDRESS OF OUTPUT DATA
LD C,(HL) ;GET PORT ADDRESS
INC HL ;POINT TO FIRST DATA VALUE (NEXT BYTE)

;OUTPUT DATA AND CONTINUE TO NEXT PORT
OTIR ;SEND DATA VALUES TO PORT
JR IPORTS ;CONTINUE TO NEXT PORT ENTRY

;SIO INITIALIZATION DATA

SIOINT:
;RESET CHANNEL A
DB 1
DB SIOCAS
DB 00011000B

11A UNBUFFERED INPUT/OUTPUT USING AN SIO (SINTIO) 401

:OUTPUT 1 BYTE
~DESTINATION IS CHANNEL A COMMAND/STATUS
;SELECT WRITE REGISTER 0
;BITS 2,1,0 = 0 (WRITE REGISTER 0)
:BITS 5.4.3 = 011 (CHANNEL RESET)
;BITS 7,6 = 0 (DO NOT CARE)

;SET INTERRUPT VECTOR AND ALLOW STATUS TO AFFECT IT
DB 4 :OUTPUT 2 BYTES
DB SIOCBS ;DESTINATION IS COMMAND REGISTER B
DB 00000010B ;SELECT WRITE REGISTER 2
DB SIOIV AND OFFH ;SET INTERRUPT VECTOR FOR SIO
DB 00000001B :SELECT WRITE REGISTER 1
DB 00000100B ;ALLOW STATUS TO AFFECT VECTOR

;INITIALIZE CHANNEL A
DB 8
DB SIOCAS

;INITIALIZE BAUD RATE
DB 00010100B

DB 01001000B

:OUTPUT 8 BYTES
;DESTINATION IS COMMAND REGISTER A

CONTROL
:SELECT WRITE REGISTER 4
~ RESET EXTERNAL/STATUS INTERRUPT
;BIT 0 = 0 (NO PARITY)
;BIT 1 = 0 (DON~T CARE)
:BITS 3.2 10 (1 1/2 STOP BITS)
;BITS 5,4 00 (DON'T CARE)
~BITS 7,6 = 01 (16 TIMES CLOCK)

; INITIALIZE RECEIVE
DB 00000011B
DB 11000001B

CONTROL
;SELECT WRITE REGISTER 3
;BIT 0 = 1 (RECEIVE ENABLE)
;BITS 4,3,2,1 = 0 (DON'T CARE)
;BIT 5 = 0 (NO AUTO ENABLE)
;BIT 7,6 = 11 (RECEIVE 8 BITS/CHAR)

; INITIALIZE TRANSMIT
DB 00000101B
DB 11101010B

DB 00000001B
DB 00011011B

CONTROL
;SELECT WRITE REGISTER 5
;BIT 0 0 (NO CRC ON TRANSMIT)
;BIT 1 = 1 (REQUEST TO SEND)
;BIT 2 = 0 (DON'T CARE)
;BIT 3 = 1 (TRANSMIT ENABLE)
;BIT 4 = 0 (DO NOT SEND BREAK)
;BITS 6,5 = 11 (TRANSMIT 8 BITS/CHAR)
;BIT 7 = 1 (DATA TERMINAL READY)
;SELECT WRITE REGISTER 1
:BIT 0 = 1 (EXTERNAL INTERRUPTS)
;BIT 1 = 1 (ENABLE TRANSMIT INTERRUPT)
;BIT 2 = 0 (DO NOT CARE)
;BITS 4,3 = 11 (RECEIVE INTERRUPTS ON
; ALL CHARS, PARITY DOES NOT AFFECT
: VECTOR)
;BITS 7,6,5 = 000 (NO WAIT/READY
; FUNCTION)

:TERMINATOR FOR INITIALIZATION ARRAY

;RECEIVE DATA
:RECEIVE DATA FLAG
; (0 = NO DATAr FF = DATA AVAILABLE)
;TRANSMIT DATA
:TRANSMIT DATA FLAG
; (0 = BUFFER EMPTY. FF = BUFFER FULL)
;OUTPUT INTERRUPT EXPECTED
; (0 = NO INTERRUPT EXPECTED,
: FF = INTERRUPT EXPECTED)

402 INTERRUPTS

DB 0

; DATA SECTION
RECDAT: DS 1
RECDF: DS 1

TRNDAT: DS 1
TRNDF: DS 1

OlE: DS 1

SAMPLE EXECUTION:

;CHARACTER EQUATES
ESCAPE EQU IBH
TESTCH EQU ~A~

SCllA:
CALL INIT

;ASCII ESCAPE CHARACTER
;TEST CHARACTER = A

;INITIALIZE SIO, INTERRUPT SYSTEM

;SIMPLE EXAMPLE - READ AND ECHO CHARACTERS
: UNTIL AN ESC IS RECEIVED

LOOP:
CALL INCH ; READ CHARACTER
PUSH AF
CALL DUTCH ; ECHO CHARACTER
POP AF
CP ESCAPE ;IS CHARACTER AN ESCAPE?
dR NZrLOOP ;STAY IN LOOP IF NOT

;AN ASYNCHRONOUS EXAMPLE
; OUTPUT "A" TO CONSOLE CONTINUOUSLY. BUT ALSO LOOK AT
; INPUT SIDE, READING AND ECHOING ANY INPUT CHARACTERS

ASYNLP:
;OUTPUT AN "A" IF OUTPUT IS NOT BUSY
CALL OUTST ;IS OUTPUT BUSY?
dR C.ASYNLP :dUMP IF IT IS
LD ArTESTCH
CALL OUTCH ;OUTPUT TEST CHARACTER

;CHECK INPUT PORT
;ECHO CHARACTER IF ONE IS AVAILABLE
;EXIT ON ESCAPE CHARACTER
CALL INST ;IS INPUT DATA AVAILABLE?
dR NC,ASYNLP ;dUMP IF NOT (SEND ANOTHER "A")
CALL INCH :GET CHARACTER
CP ESCAPE ;IS IT AN ESCAPE?
JR Z,DONE ;BRANCH IF IT IS

CALL
JP

OUTCH
ASYNLP

11A UNBUFFERED INPUT/OUTPUT USING AN SIO (SINTIO) 403

:ELSE ECHO CHARACTER
;AND CONTINUE

DONE:
JP LOOP

END

Unbuffered Input/Output
Using a PIO (PINTIO) 11 B

Performs interrupt-driven input and output
using a PIO and single-character input and
output buffers. It consists of the following
subroutines:

1. INCH reads a character from the input
buffer.

2. INST determines whether the input buffer
is empty.

3. OUTCH writes a character into the output
buffer.

4. OUTST determines whether the output
buffer is full.

5. INIT initializes the PIO, the interrupt
vectors, and the software flags. The flags are
used to manage data transfers between the main
program and the interrupt service routines.

The actual service routines are

1. RDHDLR responds to the input interrupt
by reading a character from the PIO into the
input buffer.

2. WRHDLR responds to the output interrupt
by writing a character from the output buffer
into the PIO.

Procedures

1. INCH waits for a character to become
available, clears the Data Ready flag (RECDF),
and loads the character into the accumulator.

2. INST sets Carry from the Data Ready flag
(RECDF).

3. OUTCH waits for the output buffer to
empty, stores the character in the buffer, and
sets the Character Available flag (TRNDF). If
no output interrupt is expected (i.e., the interrupt

404

Registers Used:

I. INCH: AF

2. INST: AF

3. OUTCH: AF

4. OUTST: AF

5. INIT: AF, BC, HL, I

Execution Time:

I. INCH: 72 cycles if a character is available

2. INST: 27 cycles

3. OUTCH: 150 cycles if the output buffer is not
full and an output interrupt is expected; 93 additional
cycles to send the data to the PIO if no output
interrupt is expected.

4. OUTST: 27 cycles

5. INIT: 377 cycles

6. RDHDLR: 82 cycles

7. WRHDLR: 178 cycles

Program Size: 166 bytes

Data Memory Required: 5 bytes anywhere in
RAM for the received data (address RECDAT),
Receive Data flag (address RECDF), transmit data
(address TRNDAT), Transmit Data flag (address
TRNDF), and Output Interrupt Expected flag (address
OlE)

has been disabled because it occurred when no
data was available), OUTCH sends the data to
the PIO immediately.

4. OUTST sets Carry from the Character
Available flag (TRNDF).

5. INIT clears the software flags, sets up the
interrupt vectors, and initializes the PIO by
loading its control registers and interrupt vec
tor. See Chapter 1and Subroutine toE for more
details about initializing PIOs.

6. RDHDLR reads the data, saves it in the
input buffer, and sets the Data Ready flag
(RECDF).

11 BUNBUFFERED INPUT/OUTPUT USING A PIO (PINTIO) 405

7. WRHDLR determines whether data is
available. If not, it simply disables the output
(PIO port B) interrupt. If data is available,
WRHDLR sends it to the PIO and clears the
Character Available flag (TRNDF).

The special problem here is that an output
interrupt may occur when no data is available.
It cannot simply be ignored or it will assert it
self indefinitely, causing an endless loop. The
solution is simply to disable the output in
terrupt from PIO port B.

But now a new problem arises when output
data becomes available. That is, since the
interrupt has been disabled, it obviously
cannot inform the system that the output de
vice is ready for data. The solution is to have
a flag that indicates (with a 0 value) that the
output interrupt has occurred without being
serviced. This flag is called OlE (Output In
terrupt Expected).

Entry Conditions

1. INCH: none

2. INST: none

3. OUTCH: character to transmit in A

4. OUTST: none

5. INIT: none

The initialization routine clears OlE (since
the output device surely starts out ready for
data). The output service routine clears it when
an output interrupt occurs that cannot be
serviced (no data is available) and sets it after
sending data to the PIO (in case it might have
been cleared). Now the output routine OUTCH
can check OlE to determine whether an output
interrupt is expected. If not, OUTCH simply
sends the data immediately.

Note that a PIO interrupt cannot be cleared
without actually sending any data. This is
possible with an SIO (see Subroutine llA), so
the procedure there is slightly different.

Unserviceable interrupts occur only with
output devices, since input devices always have
data ready to transfer when they request service.
Thus, output devices cause more initialization
and sequencing problems in interrupt-driven
systems than do input devices.

Exit Conditions

1. INCH: character in A

2. INST: Carry= 0 if input buffer empty, I if
full

3. OUTCH: none

4. OUTST: Carry= 0 if output buffer empty,
1 if full

5. INIT: none

Title

Name:

Simple interrupt input and output usinq a zao
PIO and single character buffers
PINTIO

406 INTERRUPTS

Purpose:

Entry:

This program consists of 5 subroutines which
perform interrupt driven input and output using
a ZSO PIO.

INCH
Read a character

INST
Determine input status (whether input
buffer is empty)

OUTCH
Write a character

OUTST
Determine output status (whether output
buffer is full>

INIT
Initialize PIO and interrupt system

INCH
No parameters

INST
No parameters

OUTCH
Register A = character to transmit

OUTST
No parametel'"s

INIT
No parameters

Exit: INCH
Register A = character

INST
Carry = 0 if input buffer is empty,
1 if char~cter is available

OUTCH
No parameters

OUTST
Cal'"ry = 0 if output buffer is not
full, 1 if it is full

INIT
No parameters

Registers used: INCH
A,F

INST
A,F

OUTCH
A,F

OUTST
A,F

INIT
A,F,BC,HL,I

11 BUNBUFFERED INPUT/OUTPUT USING A PIO (PINTIO) 407

Time: INCH
72 cycles if a character is available

INST
27 cycles

OUTCH
150 cycles if output buffer is not full

and output interrupt is expected
OUTST

27 cycles
INIT

377 cycles
RDHDLR

82 cYcles
WRHDLR

178 cycles

Size: Program 166 bytes
Data 5 bytes

PIOAD
PIOAC
PIOBD
PIOBC
INTRPV
PIOIVA
PIOIVB

;PIO EQUATES
; PIO IS PROGRAMMED

PORT A INPUT
PORT B OUTPUT

;ARBITRARY PIO PORT
EQU 90H
EQU 91H
EQU 92H
EQU 93H
EQU 8000H
EQU INTRPV
EQU INTRPV+2

FOR:

ADDRESSES
;PORT A DATA
;PORT A CONTROL
;PORT B DATA
:PORT B CONTROL
;BASE OF INTERRUPT VECTORS
; INTERRUPT VECTOR FOR PORT A
; INTERRUPT VECTOR FOR PORT B

;GET INPUT STATUS
;WAIT IF NO CHARACTER AVAILABLE
;DISABLE INTERRUPTS

; INDICATE INPUT BUFFER EMPTY
:GET CHARACTER FROM INPUT BUFFER
;REENABLE INTERRUPTS

INST
NC,INCH

A
(RECDF),A
A. (RECDAT)

CALL
JR
DI
SUB
LD
LD
EI
RET

;RETURN INPUT STATUS (CARRY = 1 IF INPUT DATA IS AVAILABLE)

:READ CHARACTER
INCH:

INST:
LD A.(RECDF)
RRA

RET

;WRITE CHARACTER

OUTCH:
PUSH AF

:GET DATA READY FLAG
;SET CARRY FROM DATA READY FLAG
; IF CARRY = 1. CHARACTER IS AVAILABLE

:SAVE CHARACTER TO WRITE

408 INTERRlJPTS

;WAIT FOR CHARACTER BUFFER TO EMPTY. THEN STORE NEXT CHARACTER

;TEST OUTPUT INTERRUPT EXPECTED FLAG

;OUTPUT CHARACTER IMMEDIATELY IF
; NO OUTPUT INTERRUPT EXPECTED
;ENABLE INTERRUPTS

;GET OUTPUT STATUS
;WAIT IF OUTPUT BUFFER IS FULL
;DISABLE INTERRUPTS WHILE LOOKING AT
~ SOFTWARE FLAGS
;GET CHARACTER
;STORE CHARACTER IN OUTPUT BUFFER
; INDICATE OUTPUT BUFFER FULL

;GET TRANSMIT FLAG
~SET CARRY FROM TRANSMIT FLAG
; CARRY = 1 IF OUTPUT BUFFER FULL

A, (TRNDF)

OUTST
C.WAITOC

AF
(TRNDAT),A
A,OFFH
(TRNDF).A
A.(OIE)
A
Z.OUTDAT

EI
RET

;OUTPUT STATUS (CARRY = 1 IF OUTPUT BUFFER IS FULL)

CALL
JR
01

LD
RRA
RET

POP
LD
LD
LD
LD
OR
CALL

OUTST:

WAITOC:

; INITIALIZE PIO AND INTERRUPT SYSTEM
INIT:

01 ;DISABLE INTERRUPTS

;NO INPUT DATA AVAILABLE
;OUTPUT BUFFER EMPTY
;NO OUTPUT INTERRUPT EXPECTED
; DEVICE IS READY INITIALLY

; INITIALIZE SOFTWARE FLAGS
SUB A
LD (RECDF),A
LD (TRNDF),A
LD (OIE),A

;STORE WRITE VECTOR (OUTPUT INTERRUPT)

HL.RDHDLR
(PIOIVA),HL
HL,WRHDLR
(PIOIVB).HL

LD
LD
LD
LD

~INITIALIZE INTERRUPT VECTORS
LD A,INTRPV SHR 8 ;GET HIGH BYTE OF INTERRUPT PAGE
LD I,A ;SET INTERRUPT VECTOR IN zeo
1M 2 ; INTERRUPT MODE 2 - VECTORS IN TABLE

~ ON INTERRUPT PAGE
;STORE READ VECTOR (INPUT INTERRUPT)

; INITIALIZE PIO
LD HL,PIOINT
CALL IPORTS
EI
RET

;BASE ADDRESS OF INITIALIZATION ARRAY
; INITIALIZE PIO
; ENABLE INTERRUPTS

;INPUT (READ) INTERRUPT HANDLER
RDHDLR:

PUSH
IN
LD

AF
A, (PIOAD)
(RECDAT),A

;READ DATA FROM PIO
;SAVE DATA IN INPUT BUFFER

;OUTPUT (WRITE) INTERRUPT HANDLER

;IF AN OUTPUT INTERRUPT OCCURS WHEN NO DATA IS AVAILABLE,
WE MUST DISABLE IT TO AVOID AN ENDLESS LOOP. LATER, WHEN A
CHARACTER BECOMES AVAILABLE, WE NEED TO KNOW THAT AN OUTPUT
INTERRUPT HAS OCCURRED WITHOUT BEING SERVICED. THE KEY HERE
IS THE OUTPUT INTERRUPT EXPECTED FLAG OlE. THIS FLAG IS
CLEARED WHEN AN OUTPUT INTERRUPT HAS OCCURRED BUT HAS NOT
BEEN SERVICED. IT IS ALSO CLEARED INITIALLY SINCE THE
OUTPUT DEVICE IS ASSUMED TO START OUT READY. OlE IS SET
WHENEVER DATA IS ACTUALLY SENT TO THE PIO. THUS THE OUTPUT ROUTINE
OUTCH CAN CHECK OlE TO DETERMINE WHETHER TO SEND THE DATA

; IMMEDIATELY OR WAIT FOR AN OUTPUT INTERRUPT.
;THE PROBLEM IS THAT AN OUTPUT DEVICE MAY REQUEST SERVICE BEFORE

THE COMPUTER HAS ANYTHING TO SEND (UNLIKE AN INPUT DEVICE
THAT HAS DATA WHEN IT REQUESTS SERVICE). THE OlE FLAG SOLVES
THE PROBLEM OF AN UNSERVICED OUTPUT INTERRUPT ASSERTING ITSELF
REPEATEDLY, WHILE STILL ENSURING THE RECOGNITION OF
OUTPUT INTERRUPTS.

;*************************************
:ROUTINE: OUTDAT
; PURPOSE: SEND CHARACTER TO PIa PORT B
: ENTRY: TRNDAT = CHARACTER
;EXIT: NONE
:REGISTERS USED: AF
;***************************************

WRHDLR:

NODATA:

WRDONE:

OUTDAT:

LD
LD
POP
EI
RETI

PUSH
LD
RRA
JR
CALL
JR

SUB
LD
LD
OUT

POP
EI
RETI

LD
OUT
SUB

A,OFFH
(RECDF),A
AF

AF
A, (TRNDF)

NC,NODATA
OUTDAT
WRDONE

A
(OIE),A
A,00000011B
(PIOBC),A

AF

A. (TRNDAT)
(PIOBD),A
A

11 BUNBUFFERED INPUT/OUTPUT USING A PIO (PINTIO) 409

;INDICATE INPUT DATA AVAILABLE

;REENABLE INTERRUPTS

;GET DATA AVAILABLE FLAG

;JUMP IF NO DATA TO TRANSMIT
;OUTPUT DATA TO PIO

; INDICATE NO OUTPUT INTERRUPT EXPECTED
;DISABLE OUTPUT INTERRUPTS

;RESTORE REGISTERS

GET DATA FROM OUTPUT BUFFER
SEND DATA TO PIa
INDICATE OUTPUT BUFFER EMPTY

410 INTERRUPTS

LD
DEC
LD
LD
OUT
RET

(TRNDF),A
A
(OIE),A
A,10000011B
(PIOBC).A

; INDICATE OUTPUT INTERRUPT EXPECTED
; OlE = FF HEX
;ENABLE OUTPUT INTERRUPTS

;**************************************
; ROUTINE: IPORTS
; PURPOSE: INITIALIZE I/O PORTS
; ENTRY: HL = BASE ADDRESS OF INITIALIZATION ARRAY
:EXIT: DATA OUTPUT TO PORTS
;REGISTERS USED: AF,BC,HL
;************************************

IPORTS:
;GET NUMBER OF DATA BYTES TO SEND TO CURRENT PORT
;EXIT IF NUMBER OF BYTES IS O. INDICATING TERMINATOR
LD A, (HL) ;GET NUMBER OF BYTES
OR A ;TEST FOR ZERO (TERMINATOR)
RET Z :RETURN IF NUMBER OF BYTES = 0
LD B,A
INC HL ;POINT TO PORT ADDRESS (NEXT BYTE)

:C = PORT ADDRESS
;HL = BASE ADDRESS OF OUTPUT DATA
LD C.(HL) :GET PORT ADDRESS
INC HL ;POINT TO FIRST DATA VALUE (NEXT BYTE)

;OUTPUT DATA AND CONTINUE TO NEXT PORT
OTIR ;SEND DATA VALUES TO PORT
JR IPORTS :CONTINUE TO NEXT PORT ENTRY

;PIO INITIALIZATION DATA
: PORT A = INPUT
; PORT B = OUTPUT

PIOINT:
DB
DB
DB
DB

DB

DB
DB
DB
DB

DB

3
PIOAC
PIOIVA AND OFFH
10001111B

10000111B

3
PIOBC
PIOIVB AND OFFH
11001111B

00000111B

;OUTPUT 3 BYTES
:DESTINATION IS PORT A CONTROL
;SET INTERRUPT VECTOR FOR PORT A
;BITS 3,2,1,0 = 1111 (MODE SELECT)
;BITS 5,4 = 00 (DON~T CARE)
;BITS 7,6 = 01 (INPUT MODE)
:BITS 3.2.1.0 = 0111 (INTERRUPT CONTROL)
;BITS 6.5,4 = 000 (DON~T CARE)
;BITS 7 = 1 (ENABLE INTERRUPTS)

;OUTPUT 3 BYTES
:DESTINATION IS PORT B CONTROL
;SET INTERRUPT VECTOR FOR PORT B
;BITS 3,2,1,0 = 1111 (MODE SELECT)
;BITS 5,4 = 00 (DON~T CARE)
;BITS 7,6 = 00 (CONTROL MODE)
;BITS 3.2.1.0 = 0111 (INTERRUPT CONTROL)
;BIT 4,5,6 = 000 (DON~T CARE)
;BITS 7 = 0 (DISABLE INTERRUPTS)

11 B UNBUFFERED INPUT/OUTPUT USING A PIO (PINTIO) 411

;TERMINATOR FOR INITIALIZATION ARRAY

;RECEIVE DATA
;RECEIVE DATA FLAG
; (0 = NO DATA. FF = DATA)

;TRANSMIT DATA
;TRANSMIT DATA FLAG
; (0 = BUFFER EMPTY, FF = BUFFER FULL)
;OUTPUT INTERRUPT EXPECTED
; (0 = NO INTERRUPT EXPECTED,
; FF = INTERRUPT EXPECTED)

DB 0

; DATA SECTION
RECDAT: DS 1
RECDF: DS 1

TRNDAT: DS 1
TRNDF: DS 1

DIE: DS

SAMPLE EXECUTION:

;CHARACTER EQUATES
ESCAPE EQU iBH
TESTCH EQU ~A~

;ASCII ESCAPE CHARACTER
;TEST CHARACTER = A

SCllB:
CALL INIT ; INITIALIZE PIO, INTERRUPT SYSTEM

;SIMPLE EXAMPLE - READ AND ECHO CHARACTERS
: UNTIL AN ESC IS RECEIVED

LOOP:
CALL INCH ; READ CHARACTER
PUSH AF
CALL OUTCH ;ECHO CHARACTER
POP AF
CP ESCAPE ;IS CHARACTER AN ESCAPE?
IJR NZ,LOOP ;STAY IN LOOP IF NOT

ASYNLP:

;AN ASYNCHRONOUS EXAMPLE
; OUTPUT llA ll TO CONSOLE CONTINUOUSLY, BUT ALSO LOOK AT
; INPUT SIDE, READING AND ECHOING ANY INPUT CHARACTERS

;OUTPUT AN IIA II IF OUTPUT IS NOT BUSY
CALL OUTST ;IS OUTPUT BUSY?
JR C,ASYNLP ;JUMP IF IT IS
LD A,TESTCH
CALL OUTCH ;OUTPUT TEST CHARACTER

;CHECK INPUT PORT
;ECHO CHARACTER IF ONE IS AVAILABLE
;EXIT ON ESCAPE CHARACTER
CALL INST ;IS INPUT DATA AVAILABLE?
JR NC,ASYNLP ;JUMP IF NOT (SEND ANOTHER "All)
CALL INCH ;GET THE CHARACTER
CP ESCAPE ;IS IT AN ESCAPE CHARACTER?

412 INTERRUPTS

JR
CALL
JP

ASDONE:

Z.ASDONE
OUTCH
ASYNLP

:JUMP IF IT IS
;ELSE ECHO CHARACTER
;AND CONTINUE

JP LOOP

END

Buffered Input/Output
Using an SIO (SINTB)

Performs interrupt-driven input and output
using an SIO and multiple-character buffers.
Consists of the following subroutines:

1. INCH reads a character from the input
buffer.

2. INST determines whether the input buffer
is empty.

3. OUTCH writes a character into the output
buffer.

4. OUTST determines whether the output
buffer is full.

5. INIT initializes the buffers, the interrupt
system, and the SIO.

The actual service routines are

1. RDHDLR responds to the input interrupt
by reading a character from the SIO into the
input buffer.

2. WRHDLR responds to the output interrupt
by writing a character from the output buffer
into the SIO.

Procedures

1. INCH waits for a character to become
available, gets the character from the head of
the input buffer, moves the head up one position,
and decreases the input buffer counter by 1.

2. INST clears Carry if the input buffer
counter is 0 and sets it otherwise.

3. OUTCH waits until there is space in the
output buffer (that is, until the output buffer is
not full), stores the character at the tail of the
buffer, moves the tail up one position, and in
creases the output buffer counter by 1.

11C

Registers Used:

I. INCH: AF~ C, DE, HL

2. INST: AF

3. OUTCH: AF, DE, HL

4. ~UIST: AF

5. INIT: AF, BC, HL, I

Execution Time:

I. INCH: 197 cycles if a character is available

2. INST: 39 cycles

3. OUTCH: 240 cycles if the output buffer is not
full and an output interrupt is expected; 160 addition
al cycles to send the data to the SIO if no output
interrupt is expected.

4. OUTST: 34 cycles

5. INIT: 732 cycles

6. RDHDLR: 249 cycles

7. WRHDLR: 308 cycles

Program Size: 299 bytes

Data Memory Required: II bytes anywhere in
RA M for the heads and tails of the input and output
buffers (2 bytes starting at addresses IHEAD, ITAIL,
OHEAD, and OTAIL, respectively), the numbers of
characters in the buffers (2 bytes at addresses ICNT
and OCNT), and the Output Interrupt Expected flag
(address OlE). This does not include the actual input
and output buffers.

4. OUTST sets Carry if the output buffer
counter is equal to the buffer's length (i.e., if
the output buffer is full) and clears Carry other
wise.

5. INIT clears the buffer counters, sets both
the heads and the tails of the buffers to their
base addresses, sets up the interrupt vectors,
and initializes the SIO by storing the appropriate
values in its control registers. See Subroutine
WE for more details about initializing SIOs.
INIT also clears the Output Interrupt Expected
flag, indicating that the SIO is initially ready to
transmit data.

413

414 INTERRUPTS

6. RDHDLR reads a character from the
SIO. If there is room in the input buffer, it stores
the character at the tail of the buffer, moves
the tail up one position, and increases the in
put buffer counter by 1. If the buffer is full,
RDHDLR simply discards the character.

7. WRHDLR determines whether output
data is available. If not, it simply resets the
output interrupt. Ifdata is available, WRHDLR
obtains a character from the head of the output
buffer, moves the head up one position, and
decreases the output buffer counter by 1.

The new problem with multiple-character
buffers is the management of queues. The main
program must read the data in the order in
which the input interrupt service routine receives
it. Similarly, the output interrupt service routine
must send the data in the order in which the
main program stores it. Thus, there are the
following requirements for handling input:

1. The main program must know whether
the input buffer is empty.

2. If the input buffer is not empty, the main
program must know where the oldest character
is (that is, the one that was received first).

3. The input interrupt service routine must
know whether the input buffer is full.

4. If the input buffer is not full, the interrupt
service routine must know where the next
empty place is (that is, where it should store the
new character).

The output interrupt service routine and the
main program have similar requirements for
the output buffer, although the roles of sender
and receiver are reversed.

Requirements 1and 3 are met by maintaining
a counter ICNT. INIT initializes ICNT to 0, the
interrupt service routine adds 1to it whenever it

receives a character (assuming the buffer is not
full), and the main program subtracts 1 from it
whenever it removes a character from the
buffer. Thus, the main program can determine
whether the input buffer is empty by checking if
ICNT is O. Similarly, the interrupt service rou
tine can determine whether the input buffer is
full by checking if ICNT is equal to the size of
the buffer.

Requirements 2 and 4 are met by maintain
ing two pointers, IHEAD and ITAIL, defined
as follows:

1. ITAIL contains the address of the next
empty location in the input buffer.

2. IHEAD contains the address ofthe oldest
character in the input buffer.

INIT initializes IHEAD and ITAIL to the
base address of the input buffer. Whenever the
interrupt service routine receives a character, it
places it in the buffer at ITAIL and moves ITAIL
up one position (assuming that the buffer is not
full). Whenever the main program reads a
character, it removes it from the buffer at
IHEAD and moves IHEAD up one position.
Thus, IHEAD "chases" ITAIL across the buffer
with the service routine entering characters at
one end (the tail) while the main program
removes them from the other end (the head).

The occupied part of the buffer could thus
start and end anywhere. If either IHEAD or
ITAIL goes beyond the end of the buffer, the
program simply sets it back to the buffer's base
address, thus providing wraparound. That is,
the occupied part of the buffer could start near
the end (say, at byte #195 of a 200-byte buffer)
and continue back past the beginning (say, to
byte #10). Then IHEAD would be BASE+ 194,
ITAIL would be BASE+9, and the buffer
would contain 15 characters occupying ad
dresses BASE+ 194 through BASE+ 199 and
BASE through BASE+8.

Entry Conditions

11C BUFFERED INPUT/OUTPUT USING AN SIO (SINTB) 415

Exit Conditions

1. INCH: none

2. INST: none

3. OUTCH: character to transmit in A

4. OUTST: none

5. INIT: none

1. INCH: character in A

2. INST: Carry= 0 if input buffer empty, 1 if
otherwise

3. OUTCH: none

4. OUTST: Carry = 0 if output buffer not
full, 1 if full

5. INIT: none

Title

Name:

Purpose:

Entry:

Interrupt input and output using a zao SIO and
multiple-character buffers

SINTB

This program consists of 5 subroutines which
perform interrupt driven input and output using
a zao SIO.

INCH
Read a character

INST
Determine input status (whether input
buffer is empty)

OUTCH
Write a character

OUTST
Determine output status (whet~er output
buffer is fulU

INIT
Initialize SIO and interrupt sYstem

INCH
No parameters

INST
No parameters

OUTCH
Register A = character to transmit

OUTST
No parameters

INIT
No parameters

416 INTERRUPTS

Exit: INCH
Register A = ch~racter

INST
Carry = 0 if input buffer is empty.
1 if character is available

OUTCH
No parameters

OUTST
Carry = 0 if output buffer is not
full. 1 if it is full

INIT
No parameters

Reqisters used: INCH
AF,C,DE,HL

INST
AF

OUTCH
AF,DE,HL

OUTST
AF

INIT
AF.BC.HL.I

Time: INCH
Approximately 197 cycles if a character is
available

INST
39 cycles

OUTCH
Approximately 240 cycles if output buffer
is not full and output interrupt is expected

OUTST
34 cycles

INIT
732 cycles

RDHDLR
Approximately 249 cycles

WRHDLR
Approximately 308 cycles

Size: Program 299 bytes
Data 11 bytes plus size of buffers

~SIO EQUATES
SIO IS PROGRAMMED FOR:

ASYNCHRONOUS OPERATION
16 X BAUD RATE
8-BIT CHARACTERS

; 1 1/2 STOP BITS
:ARBITRARY SIO PORT ADDRESSES

SIOCAD EQU lCH ; SIO CHANNEL A DATA

11C BUFFERED INPUT/OUTPUT USING AN SIO (SINTB) 417

SIOCBD EQU lEH
SIOCAS EQU IDH
SIOCBS EQU IFH
SIOIV EQU 8000H
SIOWV EQU SIOIV+8
SIOEV EQU SIOIV+I0

SIORV EQU SIOIV+12
SIOSV EQU SIOIV+14

~READ CHARACTER
INCH:

CALL INST
dR NC,INCH
DI
LD HL.ICNT
DEC (HL)
LD HL, <IHEAD)
LD C, (Hl')

CALL INCIPTR
LD <IHEAD) ,HL
LD A.C
EI
RET

~SIO CHANNEL B DATA
;SIO CHANNEL A COMMANDS/STATUS
;SIO CHANNEL B COMMANDS/STATUS
; INTERRUPT VECTOR
;SIO CHANNEL A WRITE INTERRUPT VECTOR
;SIO CHANNEL A EXTERNAL/STATUS
; INTERRUPT VECTOR
;SIO CHANNEL A READ INTERRUPT VECTOR
:SIO CHANNEL A SPECIAL RECEIVE
; INTERRUPT VECTOR

~GET INPUT STATUS
;WAIT IF NO CHARACTER AVAILABLE
;DISABLE INTERRUPTS
:REDUCE INPUT BUFFER COUNT BY 1

~GET CHARACTER FROM HEAD OF INPUT BUFFER

;MOVE HEAD POINTER UP 1

;REENABLE INTERRUPTS

INST::
:RETURN INPUT STATUS (CARRY = 1 IF INPUT DATA IS AVAILABLE)

LD A, (lCNT,) ;TEST INPUT BUFFER COUNT
OR A :CLEAR CARRY ALWAYS
RET Z ; RETURN, CARRY o IF NO DATA
SCF ;SET CARRY
RET ; RETURN. CARRY = 1 IF DATA AVAILABLE

;WRITE CHARACTER
OUTCH::

PUSH AF ;SAVE CHARACTER TO OUTPUT

;WAIT FOR OUTPUT BUFFER NOT FULL, THEN STORE NEXT CHARACTER
WAITOC:

CALL
JR
DI

LD
INC
LD
POP
LD
CALL
LD
LD
OR
CALL

OUTST
C,WAITOC

HL.OCNT
(HL,)
HL,(OTAIL)
AF
(HL), A
I NCOPTR
(OTAILL HL
A, (OlE)
A
Z,OUTDAT

;GET OUTPUT STATUS
;WAIT IF OUTPUT BUFFER IS FULL
;DISABLE INTERRUPTS WHILE LOOKING AT
; BUFFER, INTERRUPT STATUS
~INCREASE OUTPUT BUFFER COUNT BY 1

;POINT TO NEXT EMPTY BYTE IN BUFFER
~GET CHARACTER
;STORE CHARACTER AT TAIL OF BUFFER
;MOVE TAIL POINTER UP 1

;TEST OUTPUT INTERRUPT EXPECTED FLAG

;OUTPUT CHARACTER IMMEDIATELY IF
; OUTPUT INTERRUPT NOT EXPECTED

418 INTERRUPTS

EI ;REENABLE INTERRUPTS
RET

;OUTPUT STATUS (CARRY = 1 IF BUFFER IS FULL)
OUTST:

LD
CP
CCF
RET

A, (OCNT)
SZOBUF

;GET CURRENT OUTPUT BUFFER COUNT
;COMPARE TO MAXIMUM
;COMPLEMENT CARRY
;CARRY = 1 IF BUFFER FULL, 0 IF NOT

; INITIALIZE SIO, INTERRUPT SYSTEM
INIT:

DI ;DISABLE INTERRUPTS

;INITIALIZE BUFFER COUNTERS AND POINTERS, INTERRUPT FLAG
SUB A
LD (OIE),A ; INDICATE NO OUTPUT INTERRUPTS
LD (ICNT),A ;BUFFER COUNTERS = 0
LD (OCNT).A
LD HL,IBUP ;ALL BUFFER POINTERS = BASE ADDRESS
LD (IHEAD),HL
LD (ITAIL),HL
LD HL.OBUF
LD (OHEAD),HL
LD (OTAIL),HL

;INITIALIZE INTERRUPT VECTORS
LD A,SIOIV SHR 8 ;GET HIGH BYTE OF INTERRUPT PAGE
LD LA ;SET INTERRUPT VECTOR IN Z80
1M 2 ; INTERRUPT MODE 2 - VECTORS IN TABLE
LD HL.RDHDLR ; ON INTERRUPT PAGE
LD (SIORV),HL ;STORE READ VECTOR
LD HL.WRHDLR
LD (SIOWV),HL ; STORE WRITE VECTOR
LD HL,EXHDLR
LD (SIOEV),HL ; STORE EXTERNAL/STATUS VECTOR
LD HL,REHDLR
LD (SIOSV).HL ; STORE SPECIAL RECEIVE VECTOR

;INITIALIZE I/O PORTS
LD HL,SIOINT
CALL IPORTS
EI
RET

;BASE ADDRESS OF INITIALIZATION ARRAY
;INITIALIZE SIO
; ENABLE INTERRUPTS

READ DATA FROM SIO
SAVE DATA IN REGISTER C
ANY ROOM IN INPUT BUFFER?

;INPUT (READ) INTERRUPT HANDLER

;SAVE REGISTERS
RDHDLR:

PUSH AF
PUSH BC
PUSH DE
PUSH HL

RDl :
IN A, (SIOCAD)
LD C,A
LD HL,ICNT

11C BUFFERED INPUT/OUTPUT USING AN SIO (SINTB) 419

LD A, (HL)
CP SZIBUF
JR NC.XITRH ~""'UMP IF NO ROOM
INC (HL) ;INCREMENT INPUT BUFFER COUNTER
LD HL, <ITAIL) ;STORE CHARACTER AT TAIL OF INPUT BUFFER
LD (HL),C
CALL INCIPTR ; INCREMENT TAIL POINTER
LD <ITAIL), HL

XITRH:
POP HL ~RESTORE REGISTERS
POP DE
POP BC
POP AF
EI ;REENABLE INTERRUPTS
RETI

~GET OUTPUT BUFFER COUNTER
;TEST FOR EMPTY BUFFER
;UMP IF NO DATA TO TRANSMIT
~ELSE OUTPUT DATA

;OUTPUT (WRITE) INTERRUPT HANDLER

;SAVE REGISTERS
WRHDLR:

PUSH AF
PUSH BC
PUSH DE
PUSH HL

LD A, (OCNT)
OR A
.....R Z,NODATA
CALL OUTDAT
IJR WRDONE

;IF AN OUTPUT INTERRUPT OCCURS WHEN NO DATA IS AVAILABLE.
WE MUST DISABLE OUTPUT INTERRUPTS TO AVOID AN ENDLESS LOOP.
WHEN THE NEXT CHARACTER IS READY, IT MUST BE SENT IMMEDIATELY
SINCE NO INTERRUPT WILL OCCUR. THIS STATE IN WHICH AN OUTPUT
INTERRUPT HAS OCCURRED BUT HAS NOT BEEN SERVICED IS INDICATED
BY CLEARING OlE (OUTPUT INTERRUPT EXPECTED FLAG).

NODATA:
SUB
LD
OUT
LD
OUT

A
(OIE),A
(SIOCAS).A
A,00101000B
(SIOCAS),A

;DO NOT EXPECT AN INTERRUPT
~SELECT REGISTER 0
;RESET TRANSMITTER INTERRUPT

WRDONE:
POP
POP
POP
POP
EI
RETI

HL
DE
BC
AF

~RESTORE REGISTERS

;EXTERNAL/STATUS CHANGED INTERRUPT HANDLER
EXHDLR:

PUSH
LD

AF
A,00010000B ;RESET STATUS INTERRUPT

420 INTERRUPTS

OUT
POP
EI
RETI

(SIOCAS).A
AF

OCD OR CTS LINE CHANGED STATE. OR A
BREAK WAS DETECTED

SERVICE HERE IF NECESSARY

; SPECIAL RECEIVE ERROR INTERRUPT
REHDLR:

PUSH AF
LD A,00110000B ;RESET RECEIVE ERROR INTERRUPT
OUT (SIOCAS).A
POP AF
EI ;FRAMING ERROR OR OVERRUN ERROR OCCURRED
RETI ~ SERVICE HERE IF NECESSARY

;*************************************
; ROUTINE: OUTDAT
; PURPOSE: SEND CHARACTER TO SIO
; ENTRY: NONE
;EXIT: NONE
;REGISTERS USED: AF,DE,HL
;***************************************

OUTDAT:
LD
LD
OUT
CALL
LD
LD
DEC
LD
LD
RET

HL,(OHEAD)
A, (HLl
(SIOCAD).A
I NCOPTR
(OHEAD),HL
HL,OCNT
(HL)
A,OFFH
(OIE),A

;GET DATA FROM HEAD OF OUTPUT BUFFER
~OUTPUT DATA
; INCREMENT HEAD POINTER

:DECREMENT OUTPUT BUFFER COUNT

;EXPECT AN OUTPUT INTERRUPT
)1

~RETURN IF NOT EQUAL
;IF POINTER AT END OF BUFFER,
; SET IT BACK TO BASE ADDRESS

~INCREMENT POINTER
;COMPARE POINTER, END OF BUFFER

HL
DE,EIBUF
A.L
E
NZ
A,H
D
NZ
HL,IBUF

;*************************************
; ROUTINE: INCIPTR
; PURPOSE: INCREMENT POINTER INTO INPUT

BUFFER WITH WRAPAROUND
; ENTRY: HL = POINTER
;EXIT: HL = POINTER INCREMENTED WITH WRAPAROUND
;REGISTERS USED: AF,DE,HL
~***************************************

INCIPTR:
INC
LD
LD
CP
RET
LD
CP
RET
LD
RET

11 C BUFFERED INPUT/OUTPUT USING AN SIO (SINTB) 421

;IF POINTER AT END OF BUFFER,
; SET IT BACK TO BASE ADDRESS

; INCREMENT POINTER
;COMPARE POINTER. END OF BUFFER

HL
DE, EOBUF
A.L
E
NZ
A.H
D
NZ
HL,OBUF

;*************************************
; ROUTINE: INCOPTR
; PURPOSE: INCREMENT POINTER INTO OUTPUT

BUFFER WITH WRAPAROUND
;ENTRY: HL = POINTER
;EXIT: HL = POINTER INCREMENTED WITH WRAPAROUND
;REGISTERS USED: AF,DE,HL
=***************************************

INCOPTR:
INC
LD
LD
CP
RET
LD
CP
RET
LD
RET

;**************************************
=ROUTINE: IPORTS
; PURPOSE: INITIALIZE I/O PORTS
: ENTRY: HL = BASE ADDRESS OF INITIALIZATION ARRAY
;EXIT: DATA OUTPUT TO PORTS
:REGISTERS USED: AF.BC.HL
;************************************

IPORTS:
;GET NUMBER OF DATA BYTES TO SEND TO CURRENT PORT
;EXIT IF NUMBER OF BYTES IS O. INDICATING TERMINATOR
LD A, (HL) ;GET NUMBER OF BYTES
OR A ;TEST FOR ZERO (TERMINATOR)
RET Z ;RETURN IF NUMBER OF BYTES = 0
LD B,A
INC HL ;POINT TO PORT ADDRESS (NEXT BYTE)

;C = PORT ADDRESS
;HL BASE ADDRESS OF OUTPUT DATA
LD C,(HL) ;GET PORT ADDRESS
INC HL ;POINT TO FIRST DATA VALUE (NEXT BYTE)

;OUTPUT DATA AND CONTINUE TO NEXT PORT
OTIR ;SEND DATA VALUES TO PORT
JR IPORTS ;CONTINUE TO NEXT PORT ENTRY

SIOINT:
;SIO INITIALIZATION DATA

;RESET CHANNEL A
DB 1
DB SIOCAS
DB 00011000B

OUTPUT 1 BYTE
TO CHANNEL A COMMAND/STATUS
SELECT WRITE REGISTER 0
BITS 2,1,0 0 (WRITE REGISTER 0)
BITS 5,4,3 011 (CHANNEL RESET)
BITS 7,6 = 0 (DO NOT CARE)

422 INTERRUPTS

;SET INTERRUPT VECTOR
DB 4
DB SIOCBS
DB 00000010B
DB SIOIV AND OFFH
DB 00000001B
DB 00000100B

;INITIALIZE CHANNEL A
DB 8
DB SIOCAS

; INITIALIZE BAUD RATE
DB 00010100B

DB 01001000B

AND ALLOW STATUS TO AFFECT IT
;OUTPUT 2 BYTES
;DESTINATION IS COMMAND REGISTER B
;SELECT WRITE REGISTER 2
;SET INTERRUPT VECTOR FOR SIO
:SELECT WRITE REGISTER 1
;TURN ON STATUS AFFECTS VECTOR

:OUTPUT 8 BYTES
;DESTINATION IS COMMAND REGISTER A

CONTROL
;SELECT WRITE REGISTER 4
; RESET EXTERNAL/STATUS INTERRUPT
;BlT 0 = 0 (NO PARITY)
;BIT 1 = 0 (DON'T CARE)
;BITS 3,2 = 10 (1 1/2 STOP BITS)
;BITS 5.4 00 (DON'T CARE)
;BITS 7,6 = 01 (16 TIMES CLOCK)

;INITIALIZE RECEIVE
DB 00000011B
DB 11000001B

CONTROL
:SELECT WRITE REGISTER 3
;BIT 0 = 1 (RECEIVE ENABLE)
;BITS 4,3,2,1 = 0 (DON'T CARE)
:BIT 5 = 0 (NO AUTO ENABLE)
;BIT 7,6 = 11 (RECEIVE 8 BITS/CHAR)

;INITIALIZE TRANSMIT
DB 00000101B
DB 11101010B

DB 00000001B
DB 00011011B

DB 0

; DATA SECTION
IHEAD: DS 2

ITAIL: DS 2

ICNT: DS
OHEAD: DS 2

CONTROL
:SELECT WRITE REGISTER 5
;BIT 0 = 0 (NO CRC ON TRANSMIT)
;BIT 1 = 1 (REQUEST TO SEND)
;BIT 2 = 0 (DON'T CARE)
;BIT 3 = 1 (TRANSMIT ENABLE)
;BIT 4 = 0 (DO NOT SEND BREAK)
;BITS 6,5 = 11 (TRANSMIT 8 BITS/CHAR)
;BIT 7 = 1 (DATA TERMINAL READY)
;SELECT WRITE REGISTER 1
:BIT 0 = 1 (EXTERNAL INTERRUPTS)
;BIT 1 = 1 (ENABLE TRANSMIT INTERRUPT)
;BIT 2 = 0 (DO NOT CARE)
:BITS 4.3 = 11 (RECEIVE INTERRUPTS ON
; ALL CHARS, PARITY DOES NOT AFFECT
; VECTOR)
;BITS 7.6.5 = 000 (NO WAIT/READY
; FUNCTION)
;END OF TABLE

;ADDRESS OF OLDEST CHARACTER IN INPUT
: BUFFER
;ADDRESS OF NEWEST CHARACTER IN INPUT
; BUFFER
;NUMBER OF CHARACTERS IN INPUT BUFFER
;ADDRESS OF OLDEST CHARACTER IN OUTPUT
; BUFFER

11C BUFFERED INPUT/OUTPUT USING AN SIO (SIi\ITB) 423

OTAIL: DS 2 :ADDRESS OF NEWEST CHARACTER IN OUTPUT
; BUFFER

OCNT: DS 1 ;NUMBER OF CHARACTERS IN OUTPUT BUFFER
OlE: DS 1 ;OUTPUT INTERRUPT EXPECTED

; (0 = NO INTERRUPT EXPECTED r
; FF = INTERRUPT EXPECTED)

SZIBUF EQU 1 ;SIZE OF INPUT BUFFER
IBUF: DS SZIBUF ; INPUT BUFFER
EIBUF EQU $:END OF INPUT BUFFER
SZOBUF EQU 255 ;SIZE OF OUTPUT BUFFER
OBUF: DS SZOBUF ;OUTPUT BUFFER
EOBUF EQU $;END OF OUTPUT BUFFER

SAMPLE EXECUTION:

;CHARACTER EQUATES
ESCAPE EQU 1BH
TESTCH EQU ~A~

;ASCII ESCAPE CHARACTER
;TEST CHARACTER = A

SClle::
CALL INIT ;INITIALIZE SIO r INTERRUPT SYSTEM

:SIMPLE EXAMPLE - READ AND ECHO CHARACTER
; UNTIL AN ESC IS ~ECEIVED

LOOP:
CALL INCH ; READ CHARACTER
PUSH AF
CALL OUTCH ; ECHO CHARACTER
POP AF
CP ESCAPE ;IS CHARACTER AN ESCAPE?
JR NZrLOOP :STAY IN LOOP IF NOT

;AN ASYNCHRONOUS EXAMPLE
; OUTPUT "A" TO CONSOLE CONTINUOUSLY BUT ALSO LOOK AT
; INPUT SIDEr READING AND ECHOING ANY INPUT CHARACTERS

ASYNLP:
;OUTPUT AN "A" IF OUTPUT IS NOT BUSY
CALL OUTST :IS OUTPUT BUSY?
JR CrASYNLP ;JUMP IF IT IS
LD A.TESTCH
CALL OUTCH ;OUTPUT CHARACTER

:CHECK INPUT PORT
;ECHO CHARACTER IF ONE IS AVAILABLE
:EXIT ON ESCAPE CHARACTER
CALL INST ;IS INPUT DATA AVAILABLE?
JR NCr ASYNLP ;JUMP IF NOT (SEND ANOTHER "A")
CALL INCH :GET CHARACTER
CP ESCAPE ;IS IT AN ESCAPE CHARACTER?
JR ZrDONE ;BRANCH IF IT IS

424 iNTERRUPTS

CALL
..JP

DONE:

OUTCH
ASYNLP

;ELSE ECHO CHARACTER
;AND CONTINUE

..JP LOOP

END

Real·Time Clock and Calendar (CLOCK) 11 D

Maintains a time-of-day 24-hour clock and
a calendar based on a real-time clock interrupt
generated from a Z80 eTC. Consists of the
following subroutines:

1. CLOCK returns the base address of the
clock variables.

2. ICLK initializes the clock interrupt and
the clock variables.

3. CLKINT updates the clock after each
interrupt (assumed to be spaced one tick apart).

Procedures

1. CLOCK loads the base address of the
clock variables into register pair HL. The clock
variables are stored in the following order
(lowest address first): ticks, seconds, minutes,
hours, days, months, less significant byte of
year, more significant byte of year.

2. ICLK initializes the CTC, the interrupt
system, and the clock variables. The arbitrary
starting time is 00:00:00, January 1, 1980. A real
application would clearly require some kind of
outside intervention to load or change the
clock.

3. CLKINT decrements the remaining tick
count by 1 and updates the rest of the clock if
necessary. Of course, the number of seconds
and minutes must be less than 60 and the

Entry Conditions

I. CLOCK: none

2. ICLK: none

3. CLKINT: none

Registers Used:

I. CLOCK: HL

2. ICLK: AF,HL,I

3. CLKINT: None

Execution Time:

I. CLOCK: 20 cycles

2. ICLK: 251 cycles

3. CLKINT: 93 cycles if only TICK must be dec
remented; 498 cycles maximum if changing to a new
year.

Program Size: 171 bytes

Data Memory Required: 8 bytes for the clock vari
ables starting at address CLKVAR

number of hours must be less than 24. The day
of the month must be less than or equal to the
last day for the current month; an array of the
last days of each month begins at address
LASTDY. If the month is February (#2), the
program checks if the current year is a leap year.
This involves determining whether the two least
significant bits of memory location YEAR are
both Os. If the current year is a leap year, the last
day of February is the 29th, not the 28th. The
month number may not exceed 12 (December)
or a carry to the year number is necessary. The
program must reinitialize the variables properly
when carries occur; that is, TICK to DTICK; sec
onds, minutes, and hours to 0; day and month
to 1(meaning the first day and January, respec
tively).

Exit Conditions

1. CLOCK: base address ofclock variables in
HL

2. ICLK: none

3. CLKINT: none

425

426 INTERRUPTS

Examples

These examples assume that the tick rate is
DTICK Hz (less than 256 Hz typical values
would be 60 Hz or 100 Hz) and that the clock
and calendar are saved in memory locations:

Result:
March 8, 1982, 12:00.00 A.M and DTICK ticks
(TICK) = DTICK (SEC) 0 (DAY) = 08

(MIN) = 0 (MONTH) = 03
(HOUR) = 0 (YEAR) = 1982

I. Data:
March 7, 1982, II:59.59 PM and I tick left
(TICK) = I (SEC) = 59 (DAY) = 07

(MIN) = 59 (MONTH) 0.3
(HOUR) = 23 (YEAR) 1982

Result:
Jan. I, 1983, 12:00.00 A.M!and DTICK ticks
(TICK) DTICK (SEC) = 0 (DAY) 1

(MIN) = 0 (MONTH)
(HOUR) = 0 (YEAR) = 1

TICK

SEC
MIN
HOUR
DAY
MONTH
YEAR and

YEAR+I

ticks before a carry, counted down
from DTICK

seconds (0 to 59)
minutes (0 to 59)
hour of day (0 to 23)
day of month (I to 28, 29, 30, or 31)
month of year (1 through 12)
current year

2. Data:
Dec. 31, 1982, 11:59.59 PM
(TICK) = I (SEC) 59

(MIN) = 59
(HOUR) 23

and 1 tick left
(DAY) 31
(MONTH) = 12
(YEAR) 1982

Title
Name:

Put"pose:

EntrY:

Exit:

Real-time clock and calendar
CLOCK

This program maintains a time-of-dav 24-hour
clock and a calendar based on a real-time clock
interrupt from a Z80 CTC.

CLOCK
Returns base address of clock variables

ICLK
Initializes CTC and clock interrupt

CLKINT
Updates clock variables for each tick

CLOCK
None

ICLK
None

CLOCK

11 D I<EAL-TIME CLOCK AND CALENDAR (CLOCK) 427

Register HL = Base address of time variables
ICLlc.:

None

Registers used: CLOCK
HL

ICLI:':
AF, HL, I

CLKINT
None

Time:

Size:

CLOCK
20 cycles

ICLK
251 cycles

CLKINT
93 cYcles normally if decrementing tick

498 cycles maximum if changing to a new year

Program 171 bytes
Data 8 bytes

CTCCHO
CTCITRP
CTCCMD

CTCTC

;ARBITRARY PORT ADDRESSES FOR ZSO CTC
EQU 80H ;CTC CHANNEL 0 PORT
EQU 08000H ;GTC INTERRUPT ADDRESS
EQU 10100111B :BIT 7 1 INTERRUPTS ENABLED

;BIT 6 = 0 TIMER MODE
;BIT 5 = 1 256 COUNT PRESCALER
:BIT 4 0 NEGATIVE EDGE TRIGGER
;BIT 3 = 0 START TIMER AFTER TIME
;BIT 2 1 TIME CONSTANT FOLLOWS
:BIT 1 1 RESET CHANNEL
;BIT 0 1 CONTROL WORD

EQU 250 ; TI ME CaNSTANT

:CALCULATION FOR TICK
ASSUME A 4 MHZ CLOCK FOR CTC WITH PRESCALER 256

AND COUNT = 250 = (4 * 10 A 6) / (256 * 250)
IS ABOUT 62 TICKS PER SECOND

CONST

DFLTS:
DTICK EQU 62 ;DEFAULT TICK

:RETURN BASE ADDRESS OF CLOCK VARIABLES

:INITIALIZE CTC CHANNEL 0 AS A REAL-TIME CLOCK INTERRUPT

CLOCK:

ICLK:

LD
RET

DI
LD
LD
1M

HL,CLKVAR

A,CTCITRP SHR 8
I, A
2

:GET BASE ADDRESS OF CLOCK VARIABLES

:DISABLE INTERRUPTS

:SET UP INTERRUPT VECTOR
;SET INTERRUPT MODE 2 - VECTORS IN
; TABLE ON INTERRUPT PAGE

428 INTERRUPTS

LD
LD
LD
OUT
LD
OUT
LD
OUT
LD
OUT

HL~CLKINT

(CTCITRP.l,HL
A.l
(CTCCHO.l,A
A.CTCITRP AND
(CTCCHO.l,A
A.CTCCMD
(CTCCHO.l.A
A.CTCTC
(CTCCHO.l.A

;SET INTERRUPT ADDRESS

;DISABLE CHANNEL 0
OFFH :LOW BYTE OF CTC INTERRUPT

; VECTOR TO CTC

;OUTPUT CTC COMMAND

;OUTPUT TIME CONSTANT

;INITIALIZE CLOCK VARIABLES TO ARBITRARY VALUE
:JANUARY 1. 1980 00:00.00
;A REAL CLOCK WOULD NEED OUTSIDE INTERVENTION
: TO SET OR CHANGE VALUES
LD HL,TICK
LD (HL).DTICK :INITIALIZE TICKS
INC HL
SUB A
LD (HL),A ; SECOND 0
INC HL
LD (HL).A :MINUTE 0
INC HL
LD (HL).A :HOUR = 0
INC A ;A = 1
INC HL
LD (HL),A ;DAY = (FIRST)
INC HL
LD (HL),A ; MONTH 1 (JANUARY)
LD HL.1980
LD (YEAR),HL ;YEAR = 1980

EI
RET

: HANDLE CLOCK INTERRUPT
CLKINT:

PUSH AF
PUSH HL
LD HL,TICK
DEC (HL)
JR NZ.EXITI
LD (HL),DTICK

PUSH BC
PUSH DE

LD B,O

; INCREMENT SECONDS
INC HL
INC (HL)
LD A, (HL)
CP 60
dR C,EXITO

:SAVE AF.HL

;DECREMENT TICK COUNT
;JUMP IF TICK NOT ZERO
;SET TICK COUNT BACK TO DEFAULT

:SAVE BC.DE

;0 = DEFAULT FOR SECONDS, MINUTES. HOURS

;POINT AT SECONDS
: INCREMENT TO NEXT SECOND

:SECONDS = 60?
;EXIT IF LESS THAN 60 SECONDS

LD (HL),B

11D REAL-TIME CLOCK AND CALENDAI~ (CLOCK) 429

;ELSE SECONDS = 0

; INCREMENT MINUTES
INC HL
INC (HL)
LD A, (HL)
CP 60
,JR C,EXITO
LD (HL). B

; INCREMENT HOUR
INC HL
INC (HL)
LD A, (HL)
CP 24
..JR C, EX ITO
LD (HL). B

; INCREMENT DAY
EX DE.HL
LD HL,LASTDY-l
LD A.(MONTH)
LD C,A
LD B.O
ADD HL,BC
EX DE,HL
INC HL
LD A, (HL)
INC (HL)
EX DE,HL
LD B,A
CP (HL)
EX DE,HL
,JR C,EXITO

;POINT AT MINUTES
; INCREMENT TO NEXT MINUTE

;MINUTES = 60?
;EXIT IF LESS THAN 60 MINUTES
;ELSE MINUTES = 0

;POINT AT HOUR
; INCREMENT TO NEXT HOUR

;HOURS = 24?
;EXIT IF LESS THAN 24 HOURS
;ELSE HOUR = 0

;SAVE ADDRESS OF HOUR

;GET CURRENT MONTH
;REGISTER C = MONTH

;POINT AT LAST DAY OF MONTH
;RESTORE ADDRESS OF HOUR
;POINT AT DAY
;GET CURRENT DAY
; INCREMENT TO NEXT DAY
;DE = ADDRESS OF DAY
;REGISTER B = DAY
;IS CURRENT DAY END OF MONTH?
;HL = ADDRESS OF DAY
;EXIT IF NOT AT END OF MONTH

;DETERMINE IF THIS IS END OF FEBRUARY IN A LEAP
; YEAR (YEAR DIVISIBLE BY 4)
LD A,C ;GET MONTH
CP 2 ;IS THIS FEBRUARY?
,JR NZ,INCMTH ;,JUMP IF NOT. INCREMENT MONTH
LD A, (YEAR) ;IS IT A LEAP YEAR?
AND 00000011B
,JR NZ,INCMTH ;,JUMP IF NOT

;FEBRUARY OF A LEAP YEAR HAS 29 DAYS. NOT 28 DAYS
LD A,B ;GET DAY
CP 29
,JR C,EXITO ;EXIT IF NOT 1ST OF MARCH

INCMTH:
LD
LD

INC
INC
LD

B,1
(HL).B

HL
(HL)
A,C

;DEFAULT IS 1 FOR DAY AND MONTH
;DAY = 1

; INCREMENT MONTH
;GET OLD MONTH

430 INTERRUPTS

CP
JR
LD

12
NC,EXITO
(HL),B

;WAS OLD MONTH DECEMBER?
;EXIT IF NOT
; ELSE
; CHANGE MONTH TO 1 (JANUARY)

; INCREMENT YEAR
LD HL,(YEAR)
INC HL
LD (YEAR).HL

EXITO:
;RESTORE REGISTERS
POP DE
POP BC

EXIT1:
POP
POP
EI
RETI

HL
AF

;RESTORE BC.DE

;RESTORE HL.AF

;REENABLE INTERRUPTS
; RETURN

;ARRAY OF LAST DAYS OF EACH MONTH
LASTDY:

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

31
28
31
30
31
30
31
31
30
31
30
31

; JANUARY
;FEBRUARY (EXCEPT LEAP YEARS)
; MARCH
;APRIL
;MAY
; ,JUNE
; JULY
; AUGUST
; SEPTEMBER
; OCTOBER
; NOVEMBER
; DECEMBER

;CLOCK VARIABLES
CLKVAR:
TICK: DS
SEC: DS
MIN: DS
HOUR: DS
DAY: DS
MONTH: DS
YEAR: DS

1
1
1
1
1
1
2

;TICKS LEFT IN CURRENT SECOND
;SECONDS (0 TO 59)
;MINUTES (0 TO 59)
;HOURS (0 TO 23)
;DAY (1 TO NUMBER OF DAYS IN A MONTH)
;MONTH l=JANUARY .. 12=DECEMBER
; YEAR

SAMPLE EXECUTION

;CLOCK VARIABLE INDEXES
TCKIDX EQU 0 ;INDEX TO TICK

11D REAL-TIME CLOCK AND CALENDAR (CLOCK) 431

SECIDX EQU 1 INDEX TO SECOND
MINIDX EQU 2 INDEX TO MINUTE
HRIDX EQU 3 INDEX TO HOUR
DAYIDX EQU 4 ; INDEX TO DAY
MTHIDX EQU 5 : INDEX TO MONTH
YRIDX EQU 6 ; INDEX TO YEAR

SC11D:
CALL ICLK ;INITIALIZE CLOCK

;YEAR = 1983

;IX ADDRESS OF TICKS
;SECONDS = 0
:MINUTES = 0
;HOUR = 14 (2 PM)
:DAY = 7
;MONTH = 2 (FEBRUARY)

HL
IX
(IX+SECIDX),O
(I X+MINIDX) .0
(I X+HRIDX), 14
(IX+DAYIDX).7
(IX+MTHIDX),2
HL.1983
(I X+YRIDX), L
(I X+YRIDX+1). H

; INITIALIZE CLOCK TO 2/7/83 14:00:00 (2 PM. FEB. 7,1983)
CALL CLOCK ;HL = BASE ADDRESS OF CLOCK VARIABLES
DI
PUSH
POP
LD
LD
LD
LD
LD
LD
LD
LD
EI
;WAIT FOR CLOCK TO BE 2/7/83 14:01:20 (2:01.20 PM, FEB.7, 1983)
;IX = BASE ADDRESS OF CLOCK VARIABLES

; NOTE: MUST BE CAREFUL TO EXIT IF CLOCK IS ACCIDENTALLY
; SET AHEAD. IF WE CHECK ONLY FOR EQUALITY, WE MIGHT NEVER
; FIND IT. THUS WE HAVE >= IN TESTS BELOW, NOT JUST =.
:WAIT FOR YEAR >= 1983
LD DE, 1983

WAITYR: DI ;DISABLE INTERRUPTS TO LOAD 2-BYTE YEAR
LD H. (I X+YRIDX+1) :GET YEAR
LD L, (I X+YRIDX)
EI
OR A :CLEAR CARRY
sec HL,DE ;COMPARE YEAR, 1983
..JR C.WAITYR :..JUMP IF NOT 1983

;WAIT FOR MONTH >= 2
PUSH IX
POP HL ;HL = BASE ADDRESS OF CLOCK VARIABLES
LD DE.MTHIDX
ADD HL,DE ;POINT AT MONTH
LD B,2
CALL WAIT ;WAIT FOR FEBRUARY OR LATER

;WAIT FOR DAY >= 7
DEC HL ;POINT AT DAY
LD B,7
CALL WAIT :WAIT FOR 7TH OR LATER

;WAIT FOR HOUR >= 14
DEC HL :POINT AT HOUR

432 INTERRUPTS

LD B,14
CALL WAIT jWAIT FOR .2 PM OR LATER

,WAIT FOR MINUTE >= 1
DEC HL jPOINT AT MINUTE
LD B,1
CALL WAIT jWAIT FOR .2:01 OR LATER

;WAIT FOR SECOND >= 20
DEC HL jPOINT AT SECOND
LD B,20
CALL WAIT ;WAIT FOR 2:01.20 OR LATER

; DONE
HERE:

....P HERE JIT IS NOW TIME OR LATER

;********************************
;ROUTINE: WAIT
; PURPOSE: WAIT FOR VALUE POINTED TO BY HL
, TO BECOME GREATER THAN OR EQUAL TO VALUE IN B
; ENTRY: HL = ADDRESS OF VARIABLE TO WATCH
, B = VALUE TO WAIT FOR
;EXIT: WHEN B >= (HL)
; USED: AF
;*******************************

WAIT:
LD
CP
....R
RET

END

A, (HL)
B
C,WAIT

GET PART OF CLOCK TIME
COMPARE TO TARGET
WAIT IF TARGET NOT REACHED

Append ix A zao Instruction Set
Summary

MAIN REG SET AL TERNATE REG SET
r- ----/A '- .

ACCUMU LATOR FLAGS ACCUMULATOR FLAGS
A F A' F'

B C B' C'

D E D' E'

H L H' L'

GENERAL
PURPOSE
REGISTERS

SPECIAL
PURPOSE
REGISTERS

INTERRUPT I MEMORY
VECTOR RE FR ESH
I R

INDEX REGISTER IX

INDEX REGISTER IY

STACK POINTER SP

PROGRAM COUNTER PC
1/

@

I
;I:

"P1
>
~

o..... u

Figure A-i. Z80 internal register organization

433

434 Z80 ASSEMBLY LANGUAGE SUBROUTINES

6 5 4 3 2 0

I S I z I X I H I X Ip/Vl N I c I

~lHERE:

CARRY FLAG
ADD/SUBTRACT FLAG
PARITY/OVERFLOW FLAG
HALF-CARRY FLAG
ZERO FLAG
SIGN FLAG
NOT USED

C
N

p/v
H

Z
S
X

@

I
::r:
v
;;;:
>
0..
oL..-IU

Figure A·2. Organization of the Z80 flag register

APPENDIX A Z80 INSTRUCTION SET SUMMARY 435

MASKABLE liNT)
MODE 0

PLACE INSTRUCTION ONTO DATA BUS DURING INTACK = Mi • lORa LIKE 8080A

MODEl

RESTART TO 38 H OR 56 10 ('RST 56')

MODE 2

USED BY Z80 PERIPHERALS

INTERRUPT
SERVICE
ROUTINE

STARTING
ADDRESS

TABLE

LOW ORDER

HIGH ORDER

I REGISTER

CONTENTS

8BIT VECTOR

FROM PERIPHERAL

NON MASKABLE (NMI)

RESTART TO 66 H OR 10210

INTERRUPT ENABLE I DISABLE FLIP FLOPS

.... INDICATES NO CHANGE

ACTION IFF, IFF]

CPU RESET 0 0

01 0 0

EI 1 1

LD A. I IFF] - PARITY FLAG

LD A. R IFF] - PARITY FLAG

ACCEPT NMI 0

RETN IFF] IFF] - IFF,

ACCEPT !NT 0 0

RETI

@

f
::r:
o
i:2
>
0-
oL.- U

Figure A·3. Z80 interrupt structure

436 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Table A-i. Z80 Instructions in Alphabetical Order

ADC HL, ss Add with Carry Reg. pair ss to HL CPL Complement Ace. (1 's comp)

ADC A, s Add with carry operand s to Ace. DAA Decimal adjust Ace.

ADD A, n Add value n to Ace. DECm Decrement operand m

ADD A, r Add Reg. r to Ace. DECIX Decrement IX

ADD A, (HL) Add location (H L) to Ace. DECIY Decrement IY

ADD A, (IX+d) Add location (I X+d) to Ace. DEC ss Decrement Reg. pair ss

ADD A, (lY+d) Add location (IY+d) to Ace. DI Disable interru pts

ADD HL, ss Add Reg. pair ss to H L DJNZ e Decrement B and Jump

Add Reg. pair pp to IX
relative if Blo

ADD IX, pp

ADDIY,rr Add Reg. pair rr to IY EI Enable interrupts

AND s Logical 'AND' of operand s and Ace. EX (SP), HL Exchange the location (SP) and HL

EX (SP), IX Exchange the location (SP) and IX

BIT b, (HL) Test BIT b of location (HL)
EX (SP), IY Exchange the location (SP) and IY

BIT b, (lX+d) Test BIT b of location (IX+d)
EX AF, AF' Exchange the contents of AF

BIT b, (lY+d) Test BIT b of location (IY+d) and AF'

BIT b, r Test BIT b of Reg. r EX DE, HL Exchange the contents of DE

and HL

CALL ce, nn Call subroutine at location nn if EXX Exchange the contents of BC, DE,

condition cc if true HL with contents of BC', DE', HL'

Unconditional call subroutine at
respectively

CALL nn
location nn

HALT HALT (wait for interrupt or reset)

CCF Complement carry flag
1M 0 Set interrupt mode 0

CP s Compare operand s with Ace.
1M"' Set interrupt mode 1

CPD Compare location (HL) and Ace.

decrement H Land BC 1M 2 Set interrupt mode 2

CPDR Compare location (H L) and Ace. IN A, (n) Load the Ace. with input from U
~

decrement HL and BC, repeat device n c:5
until BC=O

0

IN r, (C) Load the Reg. r with input from
..J

N

CPI Compare location (HL) and Ace. device (C) ;>.
I:Q

increment HL and decrement BC
t-

INC (HL) Increment location (H L)
t-
O'

@

CPIR Compare location (HL) and Ace.
Increment IX

f-
INC IX ::I::

increment HL, decrement BC "02
repeat until BC=O INC (IX+d) Increment location (I X+d) >-c..

0
U

APPENDIX A Z80 INSTRUCTION SET SUMMARY 437

Table A-i. (Continued)

INC IV Increment IV LD A, (nn) Load Ace. with location nn

INC (lV+d) Increment location (I V+d)
LDA, R Load Ace. with Reg. R

INC r Increment Reg. r
LD (BC), A Load location (BC) with Ace.

INC 55 Increment Reg. pair 55
LD (DE), A Load location (DE) with Ace.

IND Load location (H L) with input
LD (HL), n Load location (H L) with value n

from port (C), decrement HL LD dd, nn Load Reg. pair dd with value nn
and B

INDR Load location (H L) with input
LD HL, (nn) Load HL with location (nn)

from port (C), decrement HLand LD (HL). r Load location (H L) with Reg. r
decrement B. repeat until 8=0

LDI,A Load I with Ace.
INI Load location (H Ll with input

from port (C); and increment HL LF IX, nn Load IX with value nn

and decrement 8 LD IX, (nn) Load IX with location (nn)

INIR Load location (HLl with ihput LD (lX+d). n Load location (lX+d) with value n
from port (C), increment HL
and decrement B, repeat until LD (lX+d) , r Load location (I X+d) with Reg. r

B=O
LD IV, nn Load IV with value nn

JP (HLl Unconditional Jump to (HL)
LD IV, (nn) Load IV with location (nn)

JP (IX) Unconditional Jump to (IX)
LD (lV+d), n Load location (lV+d) with value n

JP (IV) Unconditonal Jump to (I V)
LD (lV+d), r Load location (IV+d) with Reg. r

JP cc, nn Jump to location nn if
LD (nn), A Load location (nn) with Ace.condition cc i5 true

JP nn Unconditional jump to location LD (nn), dd Load location (nn) with Reg. pair dd

nn LD (nn), HL Load location (nn) with HL

JP C, e Jump relative to PC+e if carry=1 LD (nn), IX Load location (nn) with IX

JR e Unconditional Jump relative LD (nn),IV Load location (nn) with IV
to PC+e

LD R,A Load R with Ace.
JP NC, e Jump relative to PC+e if carry=O c..i

LD r, (HL) Load Reg. r with location (HL) ~
JR NZ, e Jump relative to PC+e if non c.:5

zero (Z=O) LD r, (lX+d) Load Reg. r with location (IX+d)
0
...J

N
JR Z, e Jump relative to PC+e if zero (Z=1) LD r, (lV+d) Load Reg. r with location (lV+d) >-

~

l-
I-

LD A, (BC) Load Ace. with location (BC) LD r. n Load Reg. r with value n :::
@

f-

LD A, (DE) Load Ace. with location (DE) LD r, r' Load Reg. r with Reg. r' ::t:
0
C2

LD A,I Load Ace. with I LD SP, HL Load SP with HL >-
Q.,

0
u

438 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Table A·i. (Continued)

LD SP, IX Load SP with IX RES b, m Reset Bit b of operand m

LD SP, IV Load SP with IV RET Return from subroutine

LDD Load location (0 E) with location RET cc Return from subroutine if condition
(H L), de!';rement 0 E, HLand BG cc is true

LDDR Load location (DE) with location RETI Return from interrupt
(HL), decrement DE, HL and BG;

repeat until BG=O RETN Return from non maskable interrupt

LDI Load location (DE) with location
RL m Rotate left through carry operand m

(HL), increment DE, HL, RLA Rotate left Ace. through carry
decrement BG

RLG (HL) Rotate location (H L) left circular
LDIR Load location (DE) with location

(HL), increment DE, HL, RLG (lX+d) Rotate location (I X+d) left circular

decrement BG and repeat until
RLG (lV+d) Rotate location (lV+d) left circularBG=O

NEG Negate Ace. (2's complement) RLG r Rotate Reg. r left circular

NOP No operation RLGA Rotate left circular Ace.

RLD Rotate digit left and right between
ORs Logical 'OR' or operand s and Ace. Ace. and location (HL)
OTDR Load output port (G) with location

(H L) decrement HLand B, repeat RR m Rotate right through carry operand m

until B=O RRA Rotate right Ace. through carry
OTIR Load output port (G) with location

(HL), increment HL, decrement B, RRG m Rotate operand m right circular

repeat until B=O RRGA Rotate right circular Ace.

OUT (G), r Load output port (G) with Reg. r RRD Rotate digit right and left between

OUT (n), A Load output port (n) with Ace. Ace. and location (HL)

OUTD Load output port (G) with location RST p Restart to location p
(HL), decrement HL and B

OUTI Load output port (G) with location SBG A, s Subtract operand s from Ace. with

(H L), increment HL and decrement carry

B SBG HL, ss Subtract Reg. pair ss from HL with 0
POP IX Load IX with top of stack carry ~

0
POP IV Load IV with top of stack SGF Set carry flag (G=1) 0

....J

N
POPqq Load Reg. pair qq with top of stack SET b, (HL) Set Bit b of location (HL) >-

co
r-
r-

PUSH IX Load IX onto stack SET b, (lX+d) Set Bit b of location (IX+d)
~

@

f-

PUSH IV Load IV onto stack SET b, (lV+d) Set Bit b of location (lV+d) :I:

"Q2
PUSH qq Load Reg. pair qq onto stack SET b, r Set Bit b of Reg. r >-

0..
0
U

APPENDIX A Z80 INSTRUCTION SET SUMMARY 439

Exclusive 'OR' operand sand Acc.

Subtract operand s from Acc.

XOR s

SUB sShift operand m left arithmetic

Shift operand m right arithmetic

SLAm

SRAm

Table A·i. (Continued)
cj

r--..,~
o
o
...I
N
>
~

.-..-.
""

Shift operand m right logicalSRL m
@

f
;I:

"~
>
0-
oL...- u

Table A·2. Z80 Operation Codes in Numerical Order

OBJECT CODE INSTRUCTION

00 NOP

01 yyyy LD BC data16

02 LD (BCIA

03 INC BC

04 INC B

05 DEC B

06 yy LD B.data

07 RLCA

08 EX AF AF

09 ADD HL BC

OA LD AIBCI

OB DEC BC

OC INC C

00 DEC C

OE yy LD C data

OF RRCA

10 disp-2 DJNZ disp

11 yyyy LD DE data 16

12 LD IDEIA

13 INC DE

14 INC 0

15 DEC 0

16 yy LD o data

17 RLA

18 disp-2 JR disp

OBJECT CODE INSTRUCTION

19 ADD HLDE

1A LD AIDEI

1B DEC DE

1C INC E

10 DEC E

1E yy LD E data

1F RRA

20 dlsp-2 JR NZd,sp

21 yyyy LD HL data 16

22 ppqq LD laddrlHL

23 INC HL

24 INC H

25 DEC H

26 yy LD H data

27 DAA

28 disp-2 JR Z.disp

29 ADD HL.HL

2A ppqq LD HL.laddrl

2B DEC HL

2C INC L

20 DEC L

2E LD L.data

2F CPL

30 dlsp-2 JR NC d,sp

31 yyyy LD SP data 16

440 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Table A·2. (Continued)

OBJECT CODE INSTRUCTION

32 ppqq LD laddrlA

33 INC SP

34 INC IHU

35 DEC IHU

36 YV LD IHUdata

37 SCF

38 JR Cd,sp

39 ADD HLSP

3A ppqq LD A.laddrl

3B DEC SP

3C INC A

3D DEC A

3E YV LD A data

3F CCF

40sss LD B reg

46 LD BIHLI

4 lsss LD C reg

4E LD C IHLI

50sss LD Dreg

56 LD DIHLI

5 lsss LD E reg

5E LD E IHLI

60sss LD Hreg

66 LD H IHLI

6 lsss LD L reg

6E LD LlHU

70sss LD IHUreg

76 HALT

7 lsss LD A reg

7E LD AIHLI

80m ADD A.reg

86 ADD AIHLI

8 1rrr ADC A reg

8E ADC AIHLI

90m SUB reg

96 SUB IHU

9 1m SBC Areg

9E SBC AIHLI

AOm AND reg

A6 AND IHLI

A 1m XOR reg

AE XOR IHLI

BOm OR reg

B6 OR IHU

B 1m CP reg

BE CP IHLI

CO RET NZ

C1 POP BC

C2 ppqq JP NZaddr

C3 ppqq JP addr

C4 ppqq CALL NZ.addr

C5 PUSH BC

C6 VV ADD A.data

C7 RST OOH

C8 RET ?:

C9 RET

CA ppqq JP Zaddr

OBJECT CODE INSTRUCTION

CB 0 Om RLC reg

CB 06 RLC IHU

CB 0 1m RRC reg

CB OE RRC IHU

CB 1 Om RL reg

CB 16 RL IHLI

CB 1 1m RR reg

CB 1E RR IHLI

CB 2 Om SLA reg

CB 26 SLA IHLI

CB 2 1m SRA reg

CB 2E SRA IHLI

CB 3 1m SRL reg

CB 3E SRL IHLI

CB 01bbbm BIT b reg

CB 01bbb11O BIT blHLI

CB lObbbm RES b reg

CB lObbb11O RES b IHLI

CB 11bbbm SET b reg

CB 11bbb11O SET blHLI

CC ppqq CALL Zaddr

CD ppqq CALL addr

CE VV ADC A data

CF RST 08H

DO RET NC

01 POP DE

02 ppqq JP NC addr

03 VV OUT Iport) A

04 ppqq CALL NCaddr

05 PUSH DE

06 VV SUB data

07 RST lOH

08 RET C

09 EXX

DA ppqq JP Caddr

DB VV IN Alport)

DC ppqq CALL C addr

DO OOxx 9 ADD IX,pp

DO 21 YVVY LD IX data 16

DO 22 ppqq LD laddrllX

DO 23 INC IX

DO 2A ppqq LD IXladdrl

DO 2B DEC IX

DO 34 disp INC (IX + disp)

DO 35 rj,SP DEC (IX + dlsp)

DO 3<: disp vv LD (IX + d,sp)data

DO 01ddd11O disp LD reg (IX + disp)

DO 7 Osss disp LD (IX + displ,reg

DO 86 disp ADD A,(lX + disp)

DO 8E disp ADC A.(lX + disp)

DO 96 disp SUB (IX + disp)

DO 9E disp SBC AOX + d,sp)

DO A6 disp AND IIX + d,sp)

DO AE disp XOR OX + disp)

DO B6 disp OR OX + disp)

DO BE disp CP OX + disp)

DO CB disp 06 RLC OX + disp)

Table A·2. (Continued)

OBJECT CODE INSTRUCTION

DO CB disp OE RRC (IX + disp)

DO CB disp 16 RL (IX + disp)

DO CB disp lE RR (IX + disp)

DO CB disp 26 SLA (IX + disp)

DO CB disp 2E SRA (IX + disp)

DO CB disp 3E SRL (IX + disp)

DO CB disp 01bbbll0 BIT b(lX + dlsp)

DO CB disp lObbb 110 RES b (IX + disp)

DO CB disp 11 bbb 110 SET b (IX + disp)

DO E1 POP IX

DO E3 EX (SP) IX

DO E5 PUSH IX

DO E9 JP (IX)

DO F9 LD SP IX

DE yy SBC A data

OF RST 18H

EO RET PO

E1 POP HL

E2 ppqq JP PO addr

E3 EX ISP)HL

E4 ppqq CALL PO,add,

E5 PUSH HL

E6 yy AND data

E7 RST 20H

E8 RET PE

E9 JP (HU

EA ppqq JP PE,add,

EB EX DE HL

EC ppqq CALL PE add,

ED 01dddOOO IN reg (C)

ED 01sss001 OUT IC),reg

ED 01xx 2 SBC HL,rp

ED 01xx 3 ppqq LD (addrlrp

ED 44 NEG

ED 45 RETN

ED 01Onn11O 1M m
ED 47 LD I,A

ED 01xxg A ADC HlrP
ED 01xx B ppqq LD rp(addrl

ED 40 RETI

ED 4F LD R,A

ED 57 LD AI

ED 5F LD AR
ED 67 RRD

ED 6F RLD

ED AO LDI

ED A1 CPI

ED A2 INI

ED A3 OUTI

ED A8 LDD

ED A9 CPO

ED AA IND

ED AB aUTO

ED BO LDIR

ED B1 CPIR

ED B2 INIR

ED B3 OTIR

APPENDIX A Z80 INSTRUCTION SET SUMMARY 441

OBJECT CODE INSTRUCTION

ED B8 LDDR

ED B9 CPDR

ED BA INDR

ED BB OTOR

EE yy XOR data

EF RST 28H

FO RET P

F1 POP AF

F2 ppqq JP P addr

F3 DI

F4 ppqq CALL P add,

F5 PUSH AF

F6 yy OR data

F7 RST 30H

F8 RET M

F9 LO SP,HL

FA ppqq JP M add,

FB EI

FC ppqq CALL M add,

FD OOxx 9 ADD IY rr

FD 21 yyyy LD IY,data 16

FD 22 ppqq LD (addrllY

FD 23 INC IY

FD 2A ppqq LO IY,laddrl

FO 2B DEC IY

FD 34 dlsp INC (IY + dlsp)

PO 35 dlsp DEC (lY + dlspl

FD 36 d,sp YY LD (ly + disp) datil

FD 01ddd1·10 d,sp LD reg(lY + disp)

FO 7 Osss dlsp LD (lY + dlsp)"eg

FO 86 dlsp ADO A,(lY + disp)

FO 8E disp ADC A(lY + disp)

PO 96 disp SUB (lY + displ

FD 9E disp SBC A(lY + disp)

FD A6 disp AND (ly + disp)

PO AE disp XOR (IY + disp)

FD B6 disp OR (lY + disp)

PO BE disp CP (lY + displ

FO CB disp 06 RLC (lY + disp)

FD CB disp OE RRC (IY + disp)

PO CB disp 16 RL (ly + displ

PO CB disp 1E RR (ly + displ

FO CB disp 26 SLA (ly + disp)

FD CB disp 2E SRA (ly + disp)

FD CB disp 3E SRL (lY + disp)

FD CB disp 01bbb11O BIT b,(lY + disp)

PO CB disp lObbb 110 RES b,(lY + disp)

PO CB disp 11bbb11O SET b,(lY + disp)

FD E1 POP IY

PO E3 EX (SPI,IY

FD E5 PUSH IY

PO E9 JP (lY)

FO F9 LD SP,IY

FE YY CP data

FF RST 38H

IFF the content of the interrupt enable flip-flop (IFF) is copied into the P/V flag

Flag Notation: • =flag not affected, 0 =flag reset, I =flag set, X =flag is unknown,

t = flag is affected according to the result of the operation.

442 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Table A·3. Z80 8-Bit Load Instructions

Flags OP-Code No. No. No.
Symbolic "- of ofM ofT

Mnemonic Operation C Z PlY S N H 76 543 210 Bytes Cycles Cycles Comments

LD r, r' r +- r' · ··· 01 r' I I 4 r, r' Reg.
LD r, n r+-n · 00 r 110 2 2 7 000 B

001 C

LD r, (HL) r+-(Hi.) · 01 110 7 010 D

LD r, (lX+d) r +- (lX+d) -- . II 011 101 19 011 E

01 110 100 H

d 101 L

LD r, (lY+d) r +- (IY+d) · · ·· · · II III 101 19 III A

01 110

d

LD (HL),r (HL) +- r · 01 110 r 7

LD (lX+d), r (IX+d) +- r · ·.· II Oil 101 19

01 110 r

d

LD (I¥+d), r (lY+d) +- r ·· ·· · · II III 101 19

01 110 r

d

LD (HL), n (HL) <- n 00 110 110 10

LD (lX+d), n (IX+d) +- n · II 011 101 19

00 110 110

d

LD (IY+d), n (I¥+d) +- n · · · ·· · II III 101 19

00 110 110
d

LD A, (BC) A+- (BC) 00 001 010 7

LD A, (DE) A <- (DE) · 00 011 CI0 7

LD A, (nn) A+- (nn) 00 III 010 13

LD (BC), A (BC) +- A · · 00 000 010 7

LD (DE), A (DE) +- A 00 010 010 7

LD (nn), A (nn) +- A · 00 110 010 13

LDA, I A <- I · tIFF t 0 11 101 101

I 01 010 III

LD A, R A+-R · tiFF t II 101 101

01 011 III

LD I,A I +- A II 101 101

01 000 III

LD R, A R+-A II 101 101

01 001 III

Notes: r, r' means any of the registers A, B, C, D, E, H, L

@

f::c
o
~
;;...
p.,
oL- ~U

APPENDIX A Z80 INSTRUCTION SET SUMMARY 443

Table A-4. Z80 16-Bit Load Instructions

Ali" Op.code No, No, No.
Symbolic

z~
of ofM ofT

onic Operalion C S N H 16 543 210 Byles Cycles Sill.. Commenls

, nn dd -nn ······ 00 ddO 001 3 3 10 dd Pair

- n - 00 BC- n - 01 DE

, nn IX-nn ······ 11 011 101 4 4 14 10 Hl

00 100 001 II SP

- n -- n -
, nn IY -nn ····· · II III 101 4 4 14

00 100 001

- n -- n -
l, (nn) H - (nn+l) ··· ··· 00 101 010 3 S 16

l- (nn) - n -
- n -

, (nn) dd H - (00+1) ···· ·· II 101 101 4 6 20

ddL - (nn) 01 ddl 011

- n -- n

, (nn) IXH -(nn+1) · ·· ·· · II 011 101 4 6 20

IX l - (nn) 00 101 010

- n -- n

, (nn) IYH-(nn+l) · ···· · 11 111 101 4 6 20

IY l - (nn) 00 101 010

n

- n -
nJ, Hl (nn+l) +, H ·· · ··· 00 100 010 3 S 16

(nn) -l - n -- n -
n). dd (nn+ I) +- dd

H · ·· ··· 11 101 101 4 6 20

(nn) - ddl 01 ddO 011

- n -- n -
nJ,IX (nn+1) -IX

H · · ···· II 011 101 4 6 20

(nn) - IX l
00 100 010

- n -.
- n -

n),IY (00+1) -IYH · ····· II III 101 4 6 20

(nn) -IY l 00 100 010

- n -- n -
, Hl SP-HL ······ 11 III 001 I I 6

.IX SP-IX ····· · 11 011 101 2 2 10

II III 001

.IY SP -IY ······ II III 101 2 2 10

II III 001 qq Pair

qq (SP-2) -qql ··· · ·· 11 qqO 101 1 3 11 00 BC

(SP-I) - qqH 01 DE

IX (SP-2) -IXl ······ 11 011 101 2 4 IS 10 HL

(SP-I) -IXH
11 100 101 11 AF

IY (SP-2) -IY
l · · ···· II III 101 2 4 IS

(SP-I) +, IY
H

11 100 101

q qqH (SP+l) ······ 11 qqO 001 1 3 10

qqL - (SP)

X IXH -(SP+l)

l ···· 11 011 101 2 4 14

IXL -(SP) 11 100 001

Y IYH-(SP+I) · .··· · II III 101 2 4 14

IYL -(SP) 11 100 001

Flag Nolalion: • = nag nol affected, 0 = nag reset, I = nag set, X = nag is unknown,
I nag is affecled according to the result of lhe operation

POP I

Notes: dd IS any of the register pairs BC, DE, HL, SP
qq is any of the register pairs AF, BC, DE, HL
(PAIR)H' (PAIR)L refer 10 high order and low order eight bits of the register pair respectively

E,g BC l =C,AFH=A

POPq

LD (n

PUSH

PUSH

lD (n

LD SP

LD SP

lD SP

LDIX

lD (n

lD (n

lD dd

LD IY

lDIY

LD IX

LDH

LDdd

PUSH

Mnem

POI'I

cj
~

o
o
....l

N
>
a:l
rr-
:::;
@

f
::r::

"i:2
>
~oL-
U

444 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Table A-5. Z80 Exchange, Block Transfer, and Block Search Instructions

Flags Op.code-- No. No. No.
Symbolic ~ of ofM ofT

Mnemonic Operation C Z V S N H 76 543 210 Bytes Cycles States Comments

EX DE, HL DE ·HL · ·. · . . 11 101 011 1 1 4

EX AF. AI" AF .. · AI" 00 001 000 I 1 4

EXX

(~MD
11 011 001 1 1 4 Register bank and

auxiliary register
bank exchange

EX (SP), HL H - (SP+l) 11 100011 19

1 - (SP)

EX (SP), IX lX
H

-(SP+1) 11 011 101 23

IX L - (SPI 11 100 Oil

I"X (SP), IY IY H-'(SP+ I) 11 III 101 23

IYL - (SP) 11 100 011

(D
LOI (DE)·- (HL! ·· I · 0 0 11 101 101 16 Load (HL) into

Of -01'.+1 10 100 000 (DE), increment the

HL - IIL+I
pointcrs and
decrement the byte

HC - BC·I counter (BC)

LOIR (DEI-OIL! · · 0 · 0 0 11 101 101 21 If Be,. 0

DE - DE+ I 10 110 000 16 IIIlC: 0

HL - IIL+ I

Be - BC·I

R<pcalunlil

BC (D
IDO IO!:I-' (IiLl · · I · 0 0 II 101 101 16

Ill" •. DI-I 10 101 000

HL -IIL-l

BC .. He-I

l.DLlR (DI) - (HLl ·· 0 · 0 0 11 101 101 21 IfIlC",O

DI - OE·I 10 III 000 16 HBC: 0

IlL -HI·)

BC -BC-l

Repeal until

BC : 0

ev(D
CP) A - (HLl · I I I I I 11 101 101 16

ilL - IIL+1 10 100 001

BC - IlC - I

ev(D
('piR A - (HI) · I I I I I II 101 101 21 IfBC". 0 and A". (HL)

IIL-HL+I 10 110 001 16 If BC : 0 or A : (HL)

BC BC-l

Rcp\·;.J(until

A = (ilL.! or

He = 0

evler
CPO A - (1IL1 · I I I I I 11 101 101 16

HL ·-111·1 10 101 001

B(- B<.'·I

lG:lcr 0
('PDR A (ilL) · I I I 1 I II 101 101 21 If BC ". 0 and A ". (HL)

~

ilL -HL-I 10 III 001 16 If BC = 0 or A = (HL) <:5
0

Be - IK'-I ...J

Repeal until N
>-

A = (ilL) or o:l

BC = 0 t-
t-
O'

Notes: CD p,v nag is 0 if thc result of Be·1 = O. otherwise PlY = I
@

r-ev 1. nag IS 1 if A = (BU, otherwise Z : O. ::c
0

I lag Notation: • : nag not affected, 0 = nag reoot. I = nag set, X : nag is unknown,
i:2
>-

I : nag is affected according to the result of the operatIon.
0..
0
U

APPENDIX A Z80 INSTRUCTION SET SUMMARY 445

Table A·6. Z80 8-Bit Arithmetic and Logical Instructions

) ,

or

Flags Op-Code

~
No. No. No.

Symbolic of ofM ofl
Mnemonic Operation C Z V S N H 76 543 210 Bytes Cycles States Comments

ADD A, r A-A +r t t V t 0 t 10 [QQQ] r I I 4 r Reg.

ADDA,n A -A + n t t V t 0 t II [QQQJ 110 2 2 7 000 B
001 C

+- n -+ 010 D
ADD A, (HL) A ~ A + (HL) t t V t 0 t 10[QQQ] liD I 2 7 Oil E

ADD A, (IX+d) A-A + (IX+d) t t V t 0 t II Oil 101 3 5 19 100 H

I
10 [QQQJ 110

101 L
111 A- d -+

ADD A, (IY+d) A+-A+(IY+d) t t V t 0 t II III 101 3 5 19

10 I:.QQQJ I I0

+- d ~

ADC A, s A-A + s+CY t t V t 0 t [QQI] s is any of r, n,

SUB s A - A-s t t V t I t IQIQ] (HL), (IX+d),
(lY +d) as shown f

SBC A,s A - A -s -CY t t V t I t [QTIJ ADD instruction
ANDs A-A 1\ s 0 t P t 0 1 [j]QJ
OR s A-A V s 0 t P t 0 0 [[j]J The indica led bl ts

XOR s A-A <IlS 0 t P t 0 0 Will replace the 000 in
the ADD set abov

CP s A - s t t V t I t [ill]
INC r r - r + I · t V t 0 t 00 r []]ill 1 I 4

INC (HL) IHU +- (HLJ+ I · t V t 0 t 00 110 [IQQ] I J II

INC (IX+d) (IX+d) +- · t V t 0 t II Oil 101 J 6 23
(IX+d)+1 DO IIO[@Q]

d ~

INC (IY+d) (IY+d) ~ · t V t 0 t II III 101 3 6 23
(IY+d) + I 00 ' 1I0 []IQ]

- d

DEC m m+-m-I · 1 V t 1 1 O]JJ m is any of r, (HL
(lX+d), (IY+d) as
shown for INC
Same formal ~Ind

states as INC
Replace 100 with
101 in OP code

Notes: The V symbol in the P/V flag column indicates that the P'V flag conlains the overflow 01 lhc rL'sult of the
operatior. Similarly the P symbol indicates parity. V I means overl1ow. V = 0 means nOlllverl1ow P = I
means parity of the result is even, P = 0 meam panty of the result is odd

Flag Notation: • = /lag not affected. 0 = l1ag reset, 1 =!lag sct, X =!lag is unknown,
t = flag is affected according to the result of the operation

@

f-<::c

"02
>
0-
oL- ----'u

446 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Table A·7. Z80 General-Purpose Arithmetic and CPU Control

t)

y

Flags Op-Code

~
No. No. No.

Symbolic of ofM ofT
Mnemonic Operation C Z V S N H 76 543 210 Bytes Cycles States Comments

-
DAA Converts ace. t t P t • t 00 100 III I 1 4 Decimal adjust

content into accumulator
packed BCD
following add
or subtract
with packed
BCD operands

CPL A i\ • • • • I 1 00 101 III I 1 4 Complement
accumulator
(one's complemen

NEG A O-A t t V t I t II 101 101 2 2 8 Negate acc. (two's

01 000 lOa complement)

CCF Cy Cy t • • • a x 00 III 111 1 1 4 Complement carr
flag

SCF CY 1 1 • • • a a 00 110 111 I 1 4 Set carry flag

NOP No operation • • • • • • 00 000 000 1 1 4

HALT CPU halted • • • • • • 01 110 110 1 1 4

01 IFF 0 • • • • • • 11 110011 1 1 4

EI IFF 1 • • • • • • II III 011 1 1 4

IMO Set interrupt • • • • • • 11 101 101 2 2 8
mode a 01 000 110

1M 1 Set interrupt • • • • • • 11 lOI 101 2 2 8
mode 1 01 010 110

1M2 Set interrupt • • • • • • 11 101 101 2 2 8
mode 2 01 011 110

Notes: IFF indicates the interrupt enable flip-flop
CY indicates the carry flip-flop.

Flag Notation: • = flag not affected, a =flag reset, 1 =flag set, X = flag is unknown,

t = flag is affected according to the result of the operation.

@

I
::r::
c.:>
02
>
0..
oI-- ---'u

APPENDIX A Z80 INSTRUCTION SET SUMMArN 447

Table A·a. Z80 16-Bit Arithmetic Instructions

ego

C
E

ego

C
C

ego

ne
E
L
P

Flags Op.{:'ode No. No. No.
Symbolic of ofM ofT

Mnemonic Operation C Z IP/\ s N H 76 543 210 Bytes Cycles States Comments

ADD HL, ss HL HL+ss t • • • 0 X 00 ssl 001 I 3 II S8 R

00

ADC HL, SS HL....HL+ss+Cy t t V t 0 X II 101 101 2 4 15 01 D
10 H

01 ssl 010 II S
SBC HL, ss HL....HL- ss-cy t t V t I X II 101 101 2 4 15

01 ssO 010

ADD IX, pp IX IX + pp t • • • 0 X II Oil 101 2 4 15 pp R

00 ppl 001 00 B
01 D
10 IX
II SP

ADD IY,rr IY....IY+ rr t • • • 0 X II III 101 2 4 15 rr R

00 rrl 001 00 B
01 1)

10 IY
II SP

INC ss ss ss+I • • • • • • 00 ssO Oil I I 6

INC IX IX IX + I • • · • • · II Oil 101 2 2 10

00 100 Oil

INC IY IY-IY+ I · • • • • • II III 101 2 2 10

00 100 011

DEC ss ss ss - I • • • • • • 00 ssl 0 II I I 6

1)ECIX IX IX-I • • • • • • II Oil 101 2 2 10

00 101 011

DECIY IY IY- I • • • • • • II III 101 2 2 10

00 101 Oil

Notes: ss is any of lhe register pairs BC, DE, HI., SP
pp is any of the register pairs BC, DE, IX, SP
rr is any of the register pairs BC, DE, IY. SP.

Flag Notation: • =!lag not affet.:led, 0 =nag reset, I =flag set. X =flag is unknown.
t = nag is affected according to the result of the operation.

@

I
::c:

"C2
>
ll.
o...... ~u

448 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Table A·9. Z80 Rotate and Shift Instructions

Flags Op-Code

~
No. No. No.

Symbolic of ofM ofT
Mnemonic Operation C Z V S N H 76 543 210 Bytes Cycles States Comments

RLCA

~ · 0 0 00 000 III 4 Rotate left circular
accumulator

RLA ~ t · · · 0 0 00 010 III 4 Rotate left
accumulator

RRCA ~ t · · · 0 0 00 001 III 4 Rotate right circular
accumulator

RRA ~l t · ·· 0 0 00 011 III 4 Rotate right
accumulator

RLCr p 0 0 II 001 011 Rotate left circular

oo[QQQ]r register r

RLC (HL) p 0 0 II 001 011 4 15 Reg.

~
OO[QQQ] 110 000 B

RLC(lX+d) P 0 0 11 011 101 4 23 001 C
010 Df,(Hl),1!X+dJ (lV+dJ 11 001 011 011 E

d 100 H

00[QQQ] 110 101 L
III A

RLC (l¥+d) t t P t 0 0 II III 101 4 23
11 001 011

d

00[QQQ] I 10

RLm L§:EiJ t t P t 0 0 [QIQ] Instruction format and
states are as shownm'Er fHlII'X+d) (IY+dl
for RLC,m, To form

~~
new OP-code replace

RRCm t t P t 0 0 I]Ql] [QQQJof RLC,m with
m- r (Hl).{IX+d) OY+dl shown code

RRm ~ t t P t 0 0 I]j]J
In ., T, on,J (IX+d) (IY+dl

SLAm ~o t t P t 0 0 IJ][J
m"; LlHLI nX+dl(lY+JI

SRAm ~ t t P t 0 0 IJQI)
m 7r fHLI (IX ... d) (lY+dl

SRL m (l~--[:!] t t P t 0 0 [IT] U
m ~ f IHll (IX+d) (IY+dl 2:

AI14IJ~i8~"ILJ
0
0

RLD . t P t 0 0 11 101 101 18 Rotate digit left and ,..l

01 101 III right between the N
>-accumulator !Xl

A~IHLI.
and location (HL), l"-

I"-RRD ~ p ~ 0 0 II 101 101 18 The content of the a-

01 100 III upper half of the @

accumulator is I-
unaffected :J::

C>

Flag'Notation:
02

• = nag not affected, 0 flag reset, 1 flag set, X = flag is unknown, >-
~ = flag is affected according to the result of the operation, 0-

0
U

APPE~~DIX A Z80 INSTRUCTION SET SUMMARY 449

Table A·i0. Z80 Bit Manipulation Instructions

Flags Op.('ode

~
No. No. No.

Symbolic of ofM ofT
Mnemonic Operation C Z V S N H 76 543 210 Bytes Cycles States Comments

BITb, r Z-rb
.. f X X 0 1 11 001 011 2 2 8 r Reg.

01 b r 000 B

BIT b, (HL) Z-(HL)b .. f X X 0 1 11 001 011 2 3 12 001 C
010 D

01 b 110 011 E
BIT b, (IX+d) Z-(IX+d)b .. f X X 0 1 11 011 101 4 5 20 100 H

11 001 011 101 L
III A- d -+

01 b 110 b Bit Tested

BIT b, (IY+d) Z - (IY+d)b .. f X X 0 1 11 III 101 4 5 20 000 0

11 001 011 001 I
010 2- d ,,+
011 3

01 b 110 100 4
101 5
110 6
III 7

SET b, r rb - I • • .. · 11 001 OIl 2 2 8

[TI]b r

SETb, (HL) (HL)b -1 .. · . • • • II 001 all 2 4 15

ITIlb 110

SET b, (IX+d) (lX+d)b - 1 • • .. • • .. 11 011 101 4 6 23

11 001 OIl- d -+

illJb 110

SET b, (lY+d) (IY+d)b - I • · . · • • II III 101 4 6 23

11 001 OIl

- d
OJ] b 110

RES b, m ~-O [LQ] To form new oP·

m=r, (HL), code replace ITIl
of SET b,In with

(IX+d), [QJ. Flags and time(lY+d)
states for SET
instruction

Notes: The notation ~ indicates bit b (0 to 7) or location s.

Flag Notation: .. = flag not affected, 0 = flag reset, I -= flag set. X = flag is unknown,

f = flag is affected according to the result ot the operation.

@

i
::t:
o
C2
>
0..
o'-- ...IU

450 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Table A·11. Z80 Jump Instructions

Flags Op-Code

~
No. No. No.

Symbolic of ofM ofT
Mnemonic Operation C Z VS N H 76 543 210 Bytes Cycles States Comments

.IP nn PC +- nn · • · • • • II 000 011 3 .3 IO

+- n .-.
+- n .-. cc Condition

.IP cc, nn If condition cc · · · • • • II cc 010 J .3 IO 000 NZnon zero
is true PC +-nn. .. - n -> 001 Z zero
otherwise 010 NCnon carry
continue

+- n -> OIl C carry
100 PO parity odd
101 PE parity even
110 P sign positive

JR e PC +- PC + e • • • · • • 00011 000 2 3 12 III M sign negative

+- e-2 .-.

JR C, e IfC = 0, · • · · • • 00 III 000 2 2 7 If condition not met
continue +- e-2 .-.

IfC = I, 2 3 12 If condition is met
PC - PC+e

JR NC, e IfC = I. • • • • • • 00 110 000 2 2 7 If condition not met
continue - e-2 .-.

If C = O. 2 3 12 If condition is md
PC +- PC + e

JR Z, e If Z = 0 • · · • • • 00 101 000 2 2 7 If condition not met
continue +- e-2 -+

IfZ = I, 2 .3 12 If condition is met
PC - PC + e

JR NZ, e If Z = I. • · • · • • 00 100 000 2 2 7 If condition not mt
continue +- e-2 ->

If Z = 0, 2 .3 12 If condition met
PC - PC + e

JP (HLl PC - HL · • · • · • Ii 101 001 I I 4

JP (IX) PC +-IX • • • • • • II 011 101 2 2 8

II 101 DOl

JP (lY) PC -IY • • • · · · II III 101 2 2 8

II 101 001

DJNZ,e B - B-1 • • • • • • 00 010 000 2 2 8 IfB=O
If B = 0, +- e-2 ->

continue

If B '1= 0, 2 3 13 IF B '1= 0
PC·-PC+e

Notes: e represents the extension in the relative addressing mode

e is a signed two's complement number in the range <-126, 129>

e-2 in the op-code provides an effective address of pc +e as PC is
incremented by 2 prior to the addition of e.

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

t = flag is affected according to the result of the operation.

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown
t =flag is affected according to the result of the operation.

APPENDIX A Z80 INSTRUCTION SET SUMMARY 451

Table A·12. Z80 Call and Return Instructions

Flags Op-Code

~
No. No. No.

Symbolic of ofM ofT
Mnemonic Operation C Z V S N H 76 543 210 Bytes Cycles States Comments

CALL nn {SP-l)+-PC
H • • • • • • 11 001 101 3 5 17

(SP-2)+-PC
L - n

PC-nn +- n

CALL cc, nn If condition • • • • • • 11 cc 100 3 3 10 If cc is false
cc is false

+- n
continue,
otherwise +- n 3 5 17 If cc is true

same as
CALL nn

RET PC
L

+-(SP) • • • • • • 11 001 001 1 3 10
PCH+-{SP+ 1)

RETcc If condition • • • • • • 11 cc 000 1 1 5 If cc is false
cc is false
continue,

1 3 11 If cc is trueotherwise
same as cc Condition
RET 000 NZ non zero

001 Z zero
010 NC non carry

RET! Return from • • • • • • 11 101 101 2 4 14 011 C carry
interrupt 01 001 101 100 PO parity odd

RETN Return from 11 101 101 2 4 14 101 PE parity even
• • • • • • 110 P sign positivenon maskable

interrupt 01 000 101 III M sign negative
RSTp {SP-I)+-PCH • • • • • • 11 t III 1 3 11

{SP-2)+-PCL

PCH+-O

PC
L

+-P
t P
000 OOH
001 08H
010 lOH
011 18H
100 20H
101 28H
110 30H
111 38H

o
~

r.:5
o
-l

N
>
~

r
r-
::::
@

I
::z::
o
;;2
>
Q.,
oL- ---'u

452 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Table A·13. Z80 I/O Instructions

Notes: CD If the result of B . 1 is zero the Z flag is set, otherwise it is reset·

Flag Notation: • =flag not affected, 0 =flag reset, 1 =flag set, X = flag is unknown,
f = flag is affected according to the result of the operation.

Flags Op-Code

~
No. No. No.

Symbolic of ofM ofT
Mnemonic Operation C Z V S N IH 76 543 210 Bytes Cycles States Comments

IN A, (0) A+-'(n) • · • • · • II 011 011 2 3 11 n to AO - A7- n Acc to AS - A IS
IN r,(C) r-(C) • f P f 0 ~ II 101 101 2 3 12 Cto A

O
- A

7
if r =110 only 01 r 000 B to AS -. A1S
the flags will
be affected

~
INI (HL) -(C) X f X X 1 X 11 101 101 2 4 16 Cto A

O
- A

7
B-B-l 10 100010 B to AS - A15
HL-HL+ 1

INIR (HL)-(C) X 1 X X 1 X 11 101 101 2 5 21 Cto AD - A7
B +- B-1 10 lID 010 (If B * 0) BtoA

S
-A

I5
HL -HL+ 1 2 4 16
Repeat until (If B = 0)
B=O

:0
IND (HL) +- (C) X f X X 1 X 11 101 101 2 4 16 Cto A

O
" A

7
B +- B-1 10 101 010 B to AS ~, A

I5
HL+-HL-l

INDR (HL)-(C) X 1 X X 1 X 11 101 101 2 5 21 C to A
O

- A
7

B- B-1 10 III 010 (lfB * 0) B 10 AS" A I5
HL -HL-l

2 4 16
Repeat until (If B = 0)
B=O

OUT (n), A (0) +- A · · · · · · II 010 011 2 3 II n to AU ~. A
7~n _

Ace to AS ~. A
I5

OUT (C), r (C)-r · · · · · · II 101 101 2 3 12 C to AD -- A7
01 r 001 BIOA

S
--A

I5

CD
OUTI (C)-(HL) X t X X I X 11 101 101 2 4 16 (' 10 AU -- A7

B +- B· I ,,) 100 Oil BIOAS -A'5

HL +- HL + I

OTIR (C) +- (HL) X I X X 1 X II 101 101 2 5 21 C 10 AU - A7
B-B-l 10 110 OIl (If B * 0) BIOA

S
-A

I5
HL +- HL + 1

2 4 16
Repeat until (If B = 0)
B=O

CD
OUTD (e) - (HL) X t X X I X 11 101 lUI 2 4 16 C 10 AU - A7

B - B-1 10 101 OIl B 10 AS - AI5
HL-HL-I

OTDR (e) -(HL) X I X X I X II 101 101 2 5 21 C 10 Au -- A7
B-B-l 10 III OIl (If B * 0) BloA

B
-A

I5
HL -HL-I

2 4 16
Repeat until (If B = 0)
B=O

@

I::c
o
;:2
>
0-
oL- ..IU

APPENDIX A Z80 INSTRUCTION SET SUMMAfN 453

Table A·14. Summary of Z80 Flag Operations

t flags

rry

th carry
or
ocation m

nd right
cumulator
mulatOl

y
rect
utput
erwise Z = I
tructions
, otherwise PlY = 0
uctions
L), otherwise Z = 0

=1= 0, otherwise PlY = 0
e interrupt enable flip-flop (IFF)
he PlY flag
of location s is copied into the Z flag

tor

with carry
tract with carry, compare and
lato!

c Z \8 NH Comments

t t V t o t 8·bit add or add

t t V t I t 8-bit subtract, sub
negate accumu

0 t P t 0 1 } Logical operation
0 t P t 0 0 And set's differen
e t V t 0 t 8·bit increment
e t V t I t 8-bit decrement
t e e e o X 16-bit add
t t V t o X 16-bit add with ca

t t V t I X 16-bit subtract wi
A t e e e o 0 Rotate accumulat
m t t P t o 0 Rotate and shift I

e t P t 0 0 Rotate digit left a

t t P t e t Decimal adjust ac
e e e e I I Complement accu
I e e e o 0 Set carry

t e e e o X Complement carr
e t P t 0 0 Input register indi

• t XXI X }Block input and 0

OR e I XXI X Z =0 if B =1= 0 oth
ex t X o 0 }Block transfer ins
eX o X o 0 PlY = I if BC =1= 0
e t t t I X Block search instr

Z = I if A =(H
P/V = I if BC

e t FFt 0 0 The content of th
is copied into t

e t xix 0 I The state of bit b

t t V t I t Ne ate accumula

ADD A, s: ADC A,s
SUB s; SBC A, s, CP s, NEG

BIT b, s

NEG

Instruction

LO A, I; LD A, R

ANOs
ORs;XORs

INC s
DECm

ADD DD, ss
ADC HL,ss

SBC Hl, ss
RLA;RLCA,RRA,RRC
RL m; RLC m; RR m; RRC

SLA m; SRA m; SRL m

RLO,RRO
DAA
CPL
SCF
CCF
IN r,(C)
INI; lNO; OUTI; OUTD
lNlR; lNOR; OTIR; 0'1'
LDI,LOO
LDIR, LOOR
CPl, CPIR, CPO, CPOR

The following notation is used in this table:

Operation

Carry/link flag. C= I if the operation produced a carry from the MSB of the operand or result

Zero flag. Z= I if the result of the operation is zero

Sign flag. S= I if the MSB of the result is one.

Parity or overflow flag. Parity (P) and overflow (V) share the same flag. Logical operations affect this flag
with the paIity of the result while arithmetic operations affect this flag with the overflow of the result. If P/V
holds parity, P/V=I if the result of the operation is even, P;V=O if result is odd. If P/V holds overflow, P/V=I
if the result of the operation produced an overflow.

Half-carry flag. H=I if the add or subtract operation produced a carry into or bOlfow from into bit 4 of the accumulator.

Add/Subtract flag. N=I if the previous operation was a subtract

Hand N flags are used in conjunction with the decimal adjust instruction (DAA) to properly correct the re
sult into packed nCD format following addition or subtraction using operands with packed BCD format

The flag is affected according to the result of the operation.
The flag is unchanged by the operation.
The flag is reset by the operation.
The flag is set by the operation.
The flag is a "don't care. n

P/V flag affected according to the overflow result of the operation
P/V flag affected according to the parity result of the operation.

Anyone of the CPU registers A, B, C. D, E, H, L.
Any g·bit location for all the addressing modes allowed for the particular instruction..
Any 16-bit location for all the addressing modes allowed for that instruction
Anyone of the two index registers IX or IY.
Refresh counter.
8-bit value in range <1>, 255>
1&obit value in range <0, 65535>
Any 8-bit location for all the addressing modes allowed for the particular instruction.m

r
s
ss
ii
R
n
nn

H

N

Symbol

C

Z

S

P/v

t.
o
I
X
V
P

@

I
:::t::
o
i:2
;..
c..
o..... ... u

454 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Table A-iS. Summary of Z80 Restart Instrllctions

,-
Of>
CODE

OOOOH C7

0OO8H CF

f----->-----
C 0010

H 01
A
L
L

0018H OF
A
D
D
R 0020H E7
E
S
S

0028H EF

f----

OO.3°H F7

OO.38H FF

'.-

'RST 0'

RST 8'

'RST 16'

'RST 24'

'RST 32' 0
3
d

'RST 40' 0
...J

N
>-

'RST 48'
co
r--
r--

'"
@

'RST 56' f-::c

";;2
>-
0..
0
U

APPEf\JDIX A Z80 INSTRUCTION SET SUMMAfN 455

Table A·16. Summary of the Z80 Assembler

ASSEMBLER FIELD STRUCTURE
The assembly language instructions have the standard field structure (see Table
2-1). The required delimiters are:

1) A colon after a label. except for the pseudo-operations EQU, DEFL, and
MACRO, which require a space.

2) A space after the operation code.

3) A comma between operands in the operand field. (Remember this oneil

4) A semicolon before a comment.

5) Parentheses around memory references.

LABELS
The assembler allows six characters in labels; the first character must be a letter,
while subsequent characters must be letters, numbers, ?, or the underbar
character (_). We will use only capital letters or numbers, although some versions
of the assembler allow lower-case letters and other symbols.

RESERVED NAMES
Some names are reserved as keywords and should not be used by the program
mer. These are the register names (A, B, C, 0, E, H, L, I, R), the double register
names (IX, IV, SP), the register names (AF, BC, DE, Hl, AF', BC', DE', HL'), and
the states of the four testable flags (C, NC, Z, NZ, M, P, PE, PO).

PSEUDO-OPERATIONS
The assembler has the following basic pseudo-operations:

ADDRESSES

DEFB or DB
DEFL
DEFM
DEFS or OS
DEFWorDW
END
EQU
ORG

DEFINE BVTE
DEFINE LABEL
DEFINE STRING
DEFINE STORAGE
DEFINE WORD
END
EQUATE
ORIGIN

The Zilog Z80 assembler allows entries In the address field Irl any
of the following forms

1) Decimal (the default case)
Example 1247

2) Hexadecimal (must start With a digit and end With an H)
Examples 142CH. OE7H

3) Octal (must end with 0 or 0 but 0 IS far less confUSing)
Example 12470 or 12470

4) Binary (must end with B)
Example 1001001000111B

5) ASCII (enclosed in single quotation marks)
Example 'HERE'

6) As an offset from the Program Counter ($)
Example $+237H

Appendix B Programming
Reference for the
zao PIO Device

D2
D7
D6
CE

C/O SEL
B/ASEL

A7
A6
AS
A4

GND
A3
A2
AI
AO

A STB
B STB

A RDY
DO
DI

Z80
PIO

Pin Name

DO-07
CE
B/ASEL
C/OSEL
M"f

IORQ
RD
AO-A7
A RDY
A STB
BO-B7
B RDY
BSTB
lEI
lEO
INT
1>, +SV,GND

Figure B-1. PIa pin assignments

Description

Data Bus
Device Enable
Select Port A or Port B
Select Control or Data
Instruction fetch machine

cycle signal from CPU
Input/Output request from CPU
Read cycle status from CPU
Port A Bus
Register A Ready
Port A strobe pulse
Port B Bus
Register BReady
Port B strobe pulse
Interrupt enable in
Interrupt enable out
Interrupt request
Clock, Power, and Ground

Type

Tristate, Bidirectional
Input
Input
Input
Input

Input
Input
Tristate, Bidirectional
Output
Input
Tristate, Bidirectional
Output
Input
Input
Output
Output, Open-drain

457

458 280 ASSEMBLY LANGUAGE SUBROUTINES

+5V GND <P

+ t +

CPU {
Interface

PIO Control
Lines

Interrupt Control Lines

Figure B-2. Block diagram of the PIa

Data or
Control

} Handshake

Peripheral
Interface

Data or
Control

} Handshake

Mask
Control

Reg
(2 Bits)

Internal Bus

Mask
Reg

(8 Bits)

Input Data

Data
Input
Reg

(8 Bits)

8-Bit Peripheral
Data or Control Bus

Interrupt
Requests

Figure B-3. Block diagram of PIa port 1/0

Handshake
Lines

APPENDIX 8 PROGRAMMING REFERENCE FOR THE Z80 PIO DEVICE 459

Register Selection

Select Lines
Register Selected

C/O B/A

A Oata
B Oata
A Control
B Control

10710610510411 II II II I
-,-.' --..-~

t t L-Identifies mode control word

--------Oon't care

---------Mode select

Mode Control Word

Mode 0
Mode I
Mode 2
Mode 3

Interrupt Vector Word

ID,I D,ID,I D,I D,I D,I D,IL
~ L Identifies interrupt

~vector
.User-supplied interrupt
vector

I/O Register Control Word

10 ,1 0 610510 41D1 10 2 1011 Onl
~

+1-------0 sets bit to output
I sets bit to input

Output
Input
Bidirectional
Bit Control

Interrupt Control Word

107106105104101 I 1 I I I I
~

L.----Identifies interrupt
control word

'-------04 = 0 No mask word follows
0 4 = I Mask word follows

'-------.-- 05 0 Active level is low
05 I Active level is high

'--------.- 0 6 = ° Interrupt on OR function
0 6 = I Interrupt on ANO function

L---------- 07 0 Interrupt disabled
0 7 = I Interrupt enabled"

"Note: The Port is not enabled until the interrupt enable
is followed by an active MI

Mask Control Word

10 71 0 610 510 410JI 0 21011 0 0 1

~MBo-MB7maskbits.A
bit is monitored for an
Interrupt if it is defined
as an input and the mask
bit is set to 0

Interrupt Disable Word

10710610510410101 I I II

----t~Identifies interrupt
disable word

-------Oon't care

Interrupt disable
Interrupt enable

Figure 8-4. Programming summary for the PIa

460 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Ml MO Mode

0 0 Output
0 I Input
I 0 Bidirectional
I I Bit Control

When selecting Mode 3, the next byte must
set the 110 Register:

7 6 5 4 3 2

1/0= I Sets bit to input
1/0= 0 Sets bit to output

PIO Mode Meaning Control Word

(Binary) (Hex)
0 Output 00001111 OF
I Input 01001111 4F
2 Bidirectional 10001111 8F
3 Control 11001111 CF

Note that bits 4 and 5 are not used and
could have any values.

Figure 8-5. Mode control for the PIO

o-Bitno.
----.,,.......-....,-.,.......,.-.,.......

Command byte

"'v""t ---Interrupt vector specified

L...._--------Output these eight bits when
an interrupt request is acknowledged

Figure 8-6. Interrupt vector loading format for the PIO

APPENDIX B PROGRAMMING REFERENCE FOR THE Z80 PIO DEVICE 461

7 6 5 4 3 2 o--Bitno.

....t---Control code

------Mode select code

----------'Don't care

-------------00 Output, mode 0
01 Input, mode 1
IO Bidirectional, mode 2
II Control, mode 3

Figure 8-7. Mode selection format for the PIO

7 6 5 4 3 2 o-Bitno.

Control code

----- Interrupt enable control

----------- Don't care
L-- 0 Disable interrupts

1 Enable interrupts

Figure B·8. Interrupt enable/ disable format for the PIO

462 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Interrupt control word

I if interrupt select mask follows
ootherwise

I high input on selected pins is active
olow input on selected pins is active

I AND selected pins for interrupt
oOR selected pins for interrupt

I Enable interrupts
oDisable interrupts

o "'-Bitno.

Control code

7 654 .3 2

I I I I 101111111...-

j j j j~

t

Figure 8-9. Interrupt condition-setting format for the PIa
(mode 3 only)

Table 8-1. PIa Select Logic Table 8-2. Addressing of PIa Control Registers

Signal

B/ASEL
Selected Location

CE C/D SEL

0 0 0 Port A data buffer
0 0 1 Port A control buffer
0 I ° Port B data buffer
0 I I Port B control buffer
I X X Device not selected

Register Addressing

Mode control D3 = D2 = D] Do = 1

Input/ Output control Next byte after mode control
sets mode .3

Mask control register D] = 0, D2 = D] = Do I

Interrupt mask register Next byte after mask control
register accessed with D4 = I

Interrupt enable D] = D2 = 0, D, = Do I

Interrupt vector Do = I

Appendix C ASCII
Set

haracter

~
0 1 2 3 4 5 6 7

LSD 000 001 010 011 100 101 110 111

0 0000 NUL DLE SP 0 @ p .
P

I 0001 SOH DCI ! I A Q a q
2 0010 STX DC2 " 2 B R b r

3 0011 ETX DC3 # 3 C S c s
4 0100 EOT DC4 $ 4 D T d t

5 0101 ENQ NAK % 5 E U e u

6 0110 ACK SYN & 6 F V f v

7 0111 BEL ETB 7 G W g w
8 1000 BS CAN (8 H X h x
9 1001 HT EM) 9 I Y i y

A 1010 LF SUB * J Z J z

B 1011 VT ESC + K [k I
C 1100 FF FS < L \ I I
D 1101 CR GS = M] m {

E 1110 SO RS • > N ,\ n -
F 1111 SI US /

/ ') 0 0 DEL-

463

Glossary

A

Absolute address. An address that identifies a storage location or an 110 device
without the use of a base, offset, or other factor. See also Effective address, Relative
offset.

Absolute addressing. An addressing mode in which the instruction contains the actual
address required for its execution, as opposed to modes in which the instruction
contains a relative offset or identifies a base register.

Accumulator. A register that is the implied source of one operand and the destination
of the result in most arithmetic and logical operations.

Active transition. The edge on a strobe line that sets an indicator. The alternatives are a
negative edge (I to 0 transition) or a positive edge (0 to I transition).

Address. The identification code that distinguishes one memory location or 110 port
from another and that can be used to select a specific one.

Addressing mode. The method for specifying the addresses to be used in executing an
instruction. Common addressing modes are direct, immediate, indexed, indirect,
and relative.

Address register. A register that contains a memory address.

Address space. The total range of addresses to which a particular computer may refer.

ALU. See Arithmetic-logic unit.

Arithmetic-logic unit (ALU). A device that can perform a variety of arithmetic and
logical functions; function inputs select which one the device performs during a
particular cycle.

465

466 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Arithmetic shift. A shift operation that keeps the sign (most significant) bit the same.
In a right shift, this results in copies of the sign bit moving right (called sign
extension).

Arm. Usually refers specifically to interrupts. See Enable.

Array. A collection of related data items, usually stored in consecutive memory
addresses.

ASCII (American Standard Code for Information Interchange). A 7-bit character
code widely used in computers and communications.

Assembler. A computer program that converts assembly language programs into a
form (machine language) that the computer can execute directly. The assembler
translates mnemonic operation codes and names into their numerical equivalents
and assigns locations in memory to data and instructions.

Assembly language. A computer language in which the programmer can use mne
monic operation codes, labels, and names to refer to their numerical equivalents.

Asynchronous. Operating without reference to an overall timing source, that is, at
irregular intervals.

Autodecrementing. The automatic decrementing of an address register as part of the
execution of an instruction that uses it.

Autoincrementing. The automatic incrementing of an address register as part of the
execution of an instruction that uses it.

Automatic mode (of a peripheral chip). An operating mode in which the peripheral
chip produces control signals automatically without specific program intervention.

B

Base address. The address in memory at which an array or table starts. Also called
starting address or base.

Baud. A measure of the rate at which serial data is transmitted; bits per second,
including both data bits and bits used for synchronization, error checking, and other
purposes. Common baud rates are 1l0, 300, 1200, 2400, 4800, 9600, and 19,200.

Baud rate generator. A device that generates the proper time intervals between bits for
serial data transmission.

BCD (Binary-Coded Decimal). A representation of decimal numbers in which each
decimal digit is coded separately into a binary number.

Bidirectional. Capable of transporting signals in either direction.

GLOSSARY 467

Binary-coded decimal. See BCD.

Binary search. A search method that divides the set of items to be searched into two
equal (or nearly equal) parts in each iteration. The part containing the item being
sought is determined and then used as the set in the next iteration. Each iteration ofa
binary search thus halves the size of the set being searched. This method obviously
assumes an ordered set of items.

BIOS (Basic Input/Output System). The part of CPI M that allows the operating
system to use the 110 devices for a particular computer. The computer manufacturer
or dealer typically supplies the BIOS; Digital Research, the originator of CP1M,
provides only a sample BIOS with comments.

Bit test. An operation that determines whether a bit is 0 or 1. Usually refers to a logical
AND operation with an appropriate mask.

Block. An entire group or section, such as a set of registers or a section of memory.

Block comparison (or block compare). A search that extends through a block of
memory until either the item being sought is found or the entire block is examined.

Block move. Moving an entire set of data from one area of memory to another.

Block search. See Block comparison.

Boolean variable. A variable that has only two possible values, which may be repre
sented as true and false or as 1 and O. See also Flag.

Borrow. A bit that is set to 1 if a subtraction produces a negative result and to 0 if it
produces a positive or zero result. The borrow is commonly used to subtract num
bers that are too long to be handled in a single operation.

Bounce. Move back and forth between states before reaching a final state. Usually
refers to mechanical switches that do not open or close cleanly, but rather move back
and forth between positions for a while before settling down.

Branch instruction. See Jump instruction.

Breakpoint. A condition specified by the user under which program execution is to end
temporarily, used as an aid in debugging programs. The specification of the condi
tions under which execution will end is referred to as setting breakpoints, and the
deactivation of those conditions is referred to as clearing breakpoints.

BSC (Binary Synchronous Communications or Bisync). An older line protocol often
used by IBM computers and terminals.

Bubble sort. A sorting technique that works through the elements of an array consecu
tively, exchanging an element with its successor if they are out of order.

468 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Buffer. Temporary storage area generally used to hold data before they are transferred
to their final destinations.

Buffer empty. A signal that is active when all data entered into a buffer or register have
been transferred to their final destinations.

Bufferfull. A signal that is active when a buffer or register is completely occupied with
data that have not been transferred to their final destinations.

Buffer index. The index of the next available address in a buffer.

Buffer pointer. A storage location that contains the next available address in a buffer.

Bug. An error or flaw in a program.

Byte. A unit of eight bits. May be described as consisting of a high nibble or digit (the
four most significant bits) and a low nibble or digit (the four least significant bits).

Byte-length. A length of eight bits per item.

c
Call (a subroutine). Transfer control to a subroutine while retaining the information

required to resume the current program. A call differs from ajump or branch in that
a call remembers the previous position in the program, whereas a jump or branch
does not.

Carry. A bit that is I if an addition overflows into the succeeding digit position.

Carry flag. A flag that is I if the last operation generated a carry from the most sig
nificant bit and 0 if it did not.

CASE statement. A statement in a high-level computer language that directs the
computer to perform one of several subprograms, depending on the value of a
variable. That is, the computer performs the first subprogram if the variable has the
first value specified, and so on. The computed GO TO statement serves a similar
function in FORTRAN.

Central processing unit (CPU). The control section of the computer; the part that
controls its operations, fetches and executes instructions, and performs arithmetic
and logical functions.

Checksum. A logical sum that is included in a block ofdata to guard against recording
or transmission errors. Also referred to as longitudinal parity or longitudinal
redundancy check (LRC).

Circular shift. See Rotate.

GLOSSARY 469

Cleaning the stack. Removing unwanted items from the stack, usually by adjusting the
stack pointer.

Clear. Set to zero.

Clock. A regular timing signal that governs transitions in a system.

Close (a file). To make a file inactive. The final contents of the file are the last
information the user stored in it. The user must generally close a file after working
with it.

Coding. Writing instructions in a computer language.

Combo chip. See Multifunction device.

Command register. See Control register.

Comment. A section of a program that has no function other than documentation.
Comments are neither translated nor executed, but are simply copied into the
program listing.

Complement. Invert; see also One's complement, Two's complement.

Concatenation. Linking together, chaining, or uniting in a series. In string operations,
concatenation refers to the placing of one string after another.

Condition code. See Flag.

Control (or command) register. A register whose contents determine the state of a
transfer or the operating mode of a device.

CP / M (Control Program/ Microcomputer). A widely used di~k operating system for
Z80-based computers developed by Digital Research (Pacific Grove, CA).

CTC (Clock/Timer Circuit). A programmabie timer chip in the Z80 family. A CTC
contains four 8-bit timers, range controls (prescalers), and other circuits.

cyclic redundancy check (CRe). An error-detecting code generated from a poly
nomial that can be added to a block of data or a storage area.

D
Data accepted. A signal that is active when the most recent data have been transferred

successfully.

Data direction register. A register that determines whether bidirectional 110 lines are
being used as inputs or outputs.

Data-link control. Conventions governing the format and timing of data exchange
between communicating systems. Also called a protocol.

470 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Data-link controller. A chip that performs all or most of the functions required by a
data-link control. The SIO is a data-link controller in the Z80 family.

Data ready. A signal that is active when new data are available to the receiver. Same as
valid data.

DDCMP (Digital Data Communications Message Protocol). A protocol that sup
ports any method of physical data transfer (synchronous or asynchronous, serial or
parallel).

Debounce. Convert the output from a contact with bounce into a single clean transi
tion between states. Debouncing is most commonly applied to outputs from
mechanical keys or switches that bounce back and forth before settling into their
final positions.

Debounce time. The amount of time required to debounce a change of state.

Debugger. A systems program that helps users locate and correct errors in their
programs. Some versions are referred to as dynamic debugging tools, or DDTs after
the famous insecticide. Popular CP1M debuggers are SID (Symbolic Instruction
Debugger) and ZSID (Z80 Symbolic Instruction Debugger) from Digital Research.

Debugging. Locating and correcting errors in a program.

Device address. The address of a port associated with an 110 device.

Diagnostic. A program that checks the operation of a device and reports its findings.

Digit shift. A shift of one BCD digit position or four bit positions.

Direct addressing. An addressing mode in which the instruction contains the address
required for its execution. Note that the standard Z80 assembler requires paren-
theses around an address that is to be used directly. .

Disable (or disarm). Prevent an activity from proceeding or a signal (such as an
interrupt) from being recognized.

Disarm. Usually refers specifically to interrupts. See Disable.

Double word. When dealing with microprocessors, a unit of 32 bits.

Driver. See 110 driver.

Dump. A facility that displays the contents of an entire section of memory or group of
registers on an output device.

Dynamic allocation (of memory). The allocation of memory for a subprogram from
whatever is available when the subprogram is called. An alternative is static alloca
tion of a fixed area of storage to each subprogram. Dynamic allocation often

GLOSSARY 471

reduces overall memory usage because subprograms can share areas; it does,
however, generally require additional execution time and overhead spent in memory
management.

E

EBCDIC (Expanded Binary-Coded Decimal Interchange Code). An 8-bit character
code often used in large computers.

Echo. Reflect transmitted information back to the transmitter; send back to a terminal
the information received from it.

Editor. A program that manipulates text material and allows the user to make
corrections, additions, deletions, and other changes. A popular CP/ M editor is ED
from Digital Research.

Effective address. The actual address used by an instruction to fetch or store data.

EIA RS-232. See RS-232.

Enable (or arm). Allow an activity to proceed or a signal (such as an interrupt) to be
recognized.

Endless loop orjump-to-seljinstruction. An instruction that transfers control to itself,
thus executing indefinitely (or until a hardware signal interrupts it).

Error-correcting code. A code that the receiver can use to correct errors in messages;
the code itself does not contain any additional message.

Error-detecting code. A code that the receiver can use to detect errors in messages; the
code itself does not contain any additional message.

Even parity. A I-bit error-detecting code that makes the total number of I bits in a unit
of data (including the parity bit) even.

EXCLUSIVE OR function. A logical function that is true if either, but not both, of its
inputs is true. It is thus true ifits inputs are not equal (that is, if one of them is a logic
1 and the other is a logic 0).

Extend (a number). Add digits to a number to conform to a format without changing
its value. For example, one may extend an 8-bit unsigned result with zeros to fill a
16-bit word.

External reference. The use in a program of a name that is defined in another program.

F

F register. See Flag register.

472 zao ASSEMBLY LANGUAGE SUBROUTINES

Field. A set of one or more positions within a larger unit, such as a byte, word, or
record.

File. A collection of related information that is treated as a unit for purposes of storage
or retrieval.

Fill. Placing values in storage areas not previously in use, initializing memory or
storage.

Flag (or condition code or status bit). A single bit that indicates a condition within the
computer, often used to choose between alternative instruction sequences.

Flag (software). An indicator that is either on or off and can be used to select between
two alternative courses of action. Boolean variable and semaphore are other terms
with the same meaning.

Flag register. A Z80 register that holds all the flags. Also called the (processor) status
register.

Free-running mode. An operating mode for a timer in which it indicates the end of a
time interval and then starts another of the same length. Also called a continuous
mode.

Function key. A key that causes a system to execute a procedure or perform a function
(such as clearing the screen of a video terminal).

G
Global variable. A variable that is used in more than one section of a computer pro

gram rather than only locally.

H
Handshake. An asynchronous transfer in which sender and receiver exchange signals

to establish synchronization and to indicate the status of the data transfer. Typically,
the sender indicates that new data are available and the receiver reads the data and
indicates that it is ready for more.

Hardware stack. A stack that the computer manages automatically when executing
instructions that use it.

Head (of a queue). The location of the item most recently entered into a queue.

Header, queue. See Queue header.

Hexadecimal (or hex). Number system with base 16. The digits are the decimal
numbers 0 through 9, followed by the letters A through F (representing 10 through
15 decimal).

GLOSSARY 473

Hex code. See Object code.

High-level language. A programming language that is aimed toward the solution of
problems, rather than being designed for convenient conversion into computer
instructions. A compiler or interpreter translates a program written in a high-level
language into a form that the computer can execute. Common high-level languages
include Ada, BASIC, C, COBOL, FORTRAN, and Pascal.

Immediate addressing. An addressing mode in which the data required by an instruc
tion are part of the instruction. The data immediately follow the operation code in
memory.

Index. A data item used to identify a particular element of an array or table.

Indexed addressing. An addressing mode in which the address is modified by the
contents of an index register to determine the effective address (the actual address
used).

Indexed indirect addressing. See Preindexing.

Index register. A register that can be used to modify memory addresses.

Indirect addressing. An addressing mode in which the effective address is the contents
of the address included in the instruction, rather than the address itself.

Indirect indexed addressing. See Postindexing.

Indirect jump. A jump instruction that transfers control to the address stored in a
register or memory location rather than to a fixed address.

Input / output control block (lOCB). A group of storage locations that contains the
information required to control the operation of an 110 device. Typically included
in the information are the addresses of routines that perform operations such as
transferring a single unit of data or determining device status.

Input / output control system (laCS). A set of computer routines that controls the
performance of 110 operations.

Instruction. A group of bits that defines a computer operation and is part of the
instruction set.

Instruction cycle. The process of fetching, decoding, and executing an instruction.

Instruction execution time. The time required to fetch, decode, and execute an
instruction.

474 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Instructionfetch. The process of addressing memory and reading an instruction into
the CPU for decoding and execution.

Instruction length. The amount of memory needed to store a complete instruction.

Instruction set. The set of general-purpose instructions available on a given computer;
the set of inputs to which the CPU will produce a known response when they are
fetched, decoded, and executed.

Interpolation. Estimating values of a function at points between those at which the
values are already known.

Interrupt. A signal that temporarily suspends the computer's normal sequence of
operations and transfers control to a special routine.

Interrupt-driven. Dependent on interrupts for its operation; may idle until it receives
an interrupt.

Interrup t flag. A bit in the input/ output section that is set when an event occurs that
requires servicing by the CPU. Typical events include an active transition on a
control line and the exhaustion of a count by a timer.

Interrupt mask (or interrupt enable). A bit that determines whether interrupts will be
recognized. A mask or disable bit must be cleared to allow interrupts, whereas an
enable bit must be set.

Interrupt request. A signal that is active when a peripheral is requesting service, often
used to cause a CPU interrupt. See also Interrupt flag.

Interrupt service routine. A program that performs the actions required to respond to
an interrupt.

Interrupt vector. An address to which an interrupt directs the computer, usu-ally the
starting address of a service routine.

Inverted borrow. A bit that is set to 0 if a subtraction produces a negative result and to
I if it produces a positive or 0 result. An inverted borrow can be used like a true
borrow, except that the complement of its value (i.e., I minus its value) must be used
in the extension to longer numbers.

IOCB. See Input/ output control block.

IOCS. See Input/ output control system.

110 device table. A table that establishes the correspondence between the logical
devices to which programs refer and the physical devices that are actually used in
data transfers. An I/O device table must be placed in memory in order to run a

GLOSSARY 475

program that refers to logical devices on a computer with a particular set of actual
(physical) devices. The 110 device table may, for example, contain the starting
addresses of the 110 drivers that handle the various devices.

110 driver. A computer program that transfers data to or from an 110 device, also
called a driver or 110 utility. The driver must perform initialization functions and
handle status and control, as well as physically transfer the actual data.

Isolated inputIoutput. An addressing method for 110 ports that uses a decoding
system distinct from that used by the memory section. 110 ports thus do not occupy
memory addresses.

J

Jump instruction (or branch instruction). An instruction that places a new value in the
program counter, thus departing from the normal one-step incrementing. Jump
instructions may be conditional; that is, the new value may be placed in the program
counter only if a condition holds.

Jump table. A table consisting of the starting addresses ofexecutable routines, used to
transfer control to one of them.

l

Label. A name attached to an instruction or statement in a program that identifies the
location in memory of the machine language code or assignment produced from
that instruction or statement.

Latch. A device that retains its contents until new data are specifically entered into it.

Leading edge (of a binary pulse). The edge that marks the beginning of a pulse.

Least significant bit. The rightmost bit in a group of bits, that is, bit 0 of a byte or a
16-bit word.

Library program. A program that is part of a collection of programs and is written and
documented according to a standard format.

LIFO (last-in,jirst-outj memory. A memory that is organized according to the order in
which elements are entered and from which elements can be retrieved only in the
order opposite of that in which they were entered. See also Stack.

Linearization. The mathematical approximation of a function by a straight line
between two points at which its values are known.

Linked list. A list in which each item contains a pointer (or link) to the next item. Also
called a chain or chained list.

476 Z80 ASSEMBLY LANGUAGE SUBROUTINES

List. An ordered set of items.

Logical device. The input or output device to which a program refers. The actual or
physical device is determined by looking up the logical device in an 110 device table
-a table containing actual 1/0 addresses (or starting addresses for 1/0 drivers)
corresponding to the logical device numbers.

Logical shift. A shift operation that moves zeros in at either end as the original data are
shifted.

Logical sum. A binary sum with no carries between bit positions. See also Checksum,
EXCLUSIVE OR function.

Longitudinal parity. See Checksum.

Longitudinal redundancy check (LRC). See Checksum.

Lookup table. An array of data organized so that the answer to a problem may be
determined merely by selecting the correct entry (without any calculations).

Low-level language. A computer language in which each statement is translated
directly into a single machine language instruction.

M

Machine language. The programming language that the computer can execute directly
with no translation other than numeric conversions.

Maintenance (of programs). Updating and correcting computer programs that are in
use.

Majority logic. A combinational logic function that is true when more than half the
inputs are true.

Mark. The I state on a serial data communications line.

Mask. A bit pattern that isolates one or more bits from a group of bits.

Maskable interrupt. An interrupt that the system can disable.

Memory capacity. The total number of different memory addresses (usually specified
in bytes) that can be attached to a particular computer.

Memory-mapped 110. An addressing method for 110 ports that uses the same
decoding system used by the memory section. The 110 ports thus occupy memory
addresses.

Microcomputer. A computer that has a microprocessor as its central processing unit.

GLOSSARY 477

Microprocessor. A complete central processing unit for a computer constructed from
one or a few integrated circuits.

Mnemonic. A memory jogger, a name that suggests the actual meaning or purpose of
the object to which it refers.

Modem (Modulator/demodulator). A device that adds or removes a carrier
frequency, thereby allowing data to be transmitted on a high-frequency channel or
received from such a channel.

Modular programming. A programming method whereby the overall program is
divided into logically separate sections or modules.

Module. A part or section of a program.

Monitor. A program that allows the computer user to enter programs and data, run
programs, examine the contents of the computer's memory and registers, and utilize
the computer's peripherals. See also Operating system.

Most significant bit. The leftmost bit in a group of bits, that is, bit 7 ofa byte or bit 15 of
a 16-bit word.

Multifunction device. A device that performs more than one function in a computer
system; the term commonly refers to devices containing memory, input/ output
ports, timers, and so forth.

Multitasking. Executing many tasks during a single period of time, usually by working
on each one for a specified part of the period and suspending tasks that must wait for
input, output, the completion of other tasks, or external events.

Murphy's Law. The famous maxim that "whatever can go wrong, will."

N
Negate. Find the two's complement (negative) of a number.

Negative edge (of a binary pulse). A I-to-O transition.

Negative flag. See Sign flag.

Negative logic. Circuitry in which a logic zero is the active or ON state.

Nesting. Constructing programs in a hierarchical manner with one level contained
within another. The nesting level is the number of transfers of control required to
reach a particular part of a program without ever returning to a higher level.

Nibble. A unit offour bits. A byte (eight bits) may be described as consisting of a high
nibble (four most significant bits) and a low nibble (four least significant bits).

478 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Nine scomplement. The result of subtracting a decimal number from a number having
nines in all digit positions.

Non-maskable interrupt. An interrupt that cannot be disabled within the CPU.

Non-volatile memory. A memory that retains its contents when power is removed.

Nop (or no operation). An instruction that does nothing except increment the
program counter.

Normalization (of numbers). Adjusting a number into a regular or standard format. A
typical example is the scaling of a binary fraction to make its most significant bit 1.

o
Object code (or object program). The program that is the output of a translator

program, such as an assembler-usually a machine language program ready for
execution.

Oddparity. A I-bit error-detecting code that makes the total number of 1bits in a unit
of data (including the parity bit) odd.

One's complement. A bit-by-bit logical complement of a number, obtained by replac
ing each 0 bit with a 1 and each 1 bit with a O.

One-shot. A device that produces a pulse output of known duration in response to a
pulse input. A timer operates in a one-shot mode when it indicates the end of a single
interval of known duration.

Open (a file). Make a file ready for use. The user generally must open a file before
working with it.

Operating system (OS). A computer program that controls the overall operations of a
computer and performs such functions as assigning places in memory to programs
and data, scheduling the execution of programs, processing interrupts, and control
ling the overall input! output system. Also known as a monitor, executive, or
master-controlprogram, although the term monitor is usually reserved for a simple
operating system with limited functions.

Operation code (op code). The part of an instruction that specifies the operation to be-
performed.

Os. See Operating system.

Overflow (of a stack). Exceeding the amount of memory allocated to a stack.

Overflow, two s complement. See Two's complement overflow.

GLOSSARY 479

p

Packed decimal. A binary-coded decimal format in which each byte contains two
decimal digits.

Page. A subdivision of the memory. In byte-oriented computers, a page is generally a
256-byte section of memory in which all addresses have the same eight most
significant bits (or page number). For example, page C6 would consist of memory
addresses C600 through C6FE

Paged address. The identifier that characterizes a particular memory address on a
known page. In byte-oriented computers, this is usually the eight least significant
bits of a memory address.

Page number. The identifier that characterizes a particular page of memory. In
byte-oriented computers, this is usually the eight most significant bits of a memory
address.

Parallel interface. An interface between a CPU and input or output devices that handle
data in parallel (more than one bit at a time). The PIO is a parallel interface in the
Z80 family.

Parameter. An item that must be provided to a subroutine or program for it to be
executed.

Parity. A I-bit error-detecting code that makes the total number of I bits in a unit of
data, including the parity bit, odd (odd parity) or even (even parity). Also called
vertical parity or vertical redundancy check (VRC).

Passing parameters. Making the required parameters available to a subroutine.

Peripheral ready. A signal that is active when a peripheral can accept more data.

Physical device. An actual input or output device, as opposed to a logical device.

PIO(Parallel Inputl Output Device). A parallel interface chip in the Z80 family. A PIO
contains two 8-bit IIO ports, four control lines, and other circuitry.

Pointer. A storage place that contains the address of a data item rather than the item
itself. A pointer tells where the item is located.

Polling. Determining which IIO devices are ready by examining the status of one
device at a time.

Polling interrupt system. An interrupt system in which a program determines the
source of a particular interrupt by examining the status of potential sources one at a
time.

Pop. Remove an operand from a stack.

480 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Port. The basic addressable unit of the computer's input/ output section.

Positive edge (of a binary pulse). A O-to-l transition.

Postdecrementing. Decrementing an address register after using it.

Postincrementing. Incrementing an address register after using it.

Postindexing. An addressing mode in which the effective address is determined by first
obtaining the base address indirectly and then indexing from that base address. The
"post" refers to the fact that the indexing is performed after the indirection.

Powerfail interrupt. An interrupt that informs the CPU ofan impending loss of power.

Predecrementing. Decrementing an address register before using it.

Preincrementing. Incrementing an address register before using it.

Preindexing. An addressing mode in which the effective address is determined by
indexing from the base address and then using the indexed address indirectly. The
"pre" refers to the fact that the indexing is performed before the indirection. Of
course, the array starting at the given base address must consist of addresses that can
be used indirectly.

Priority interrupt system. An interrupt system in which some interrupts have
precedence over others; that is, they will be serviced first or can interrupt the others'
service routines.

Program counter (PC register). A register that contains the address of the next
instruction to be fetched from memory.

Programmable 110 device. An I/O device that can have its mode of operation
determined by loading registers under program control.

Programmable peripheral chip (or programmable peripheral interface). A chip that
can operate in a variety of modes; its current operating mode is determined by
loading control registers under program control.

Programmable timer. A device that can handle a variety of timing tasks, including the
generation of delays, under program control. The CTC is a programmable timer in
the Z80 family.

Programmed inputIoutput. Input or output performed under program control
without using interrupts or other special hardware techniques.

Program relative addressing. A form of relative addressing in which the base address
is the program counter. Use of this form of addressing makes it easy to move
programs from one place in memory to another.

Protocol. See Data-link control.

GLOSSARY 481

Pseudo-operation (or pseudo-op or pseudo-instruction). An assembly language
operation code that directs the assembler to perform some action but does not
result in the generation of a machine language instruction.

Pull. Remove an operand from a stack; same as pop.

Push. Store an operand in a stack.

Q

Queue. A set of tasks, storage addresses, or other items that are used in a first-in,
first-out manner; that is, the first item entered into the queue is the first to be used or
removed.

Queue header. A set of storage locations describing the current location and status of
a queue.

R

RAM. See Random-access memory.

Random-access (read/write) memory (RAM). A memory that can be both read and
altered (written) in normal operation.

Read-only memory (ROM). A memory that can be read but not altered in normal
operation.

Ready for data. A signal that is active when the receiver can accept more data.

Real-time. In synchronization with the actual occurrence of events.

Real-time clock. A device that interrupts a CPU at regular time intervals.

Real-time operating system. An operating system that can act as a supervisor for
programs that have real-time requirements. May also be referred to as a real-time
executive or real-time monitor.

Reentrant. A program or routine that can be executed concurrently while the same
routine is being interrupted or otherwise held in abeyance.

Refresh. Rewriting data into a memory before its contents are lost. Dynamic RAM
must be refreshed periodically (typically every few milliseconds) or it will lose its
contents spontaneously.

Register. A storage location inside the CPU.

Registerpair. In Z80 terminology, two 8-bit registers that can be referenced as a 16-bit
unit.

482 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Relative addressing. An addressing mode in which the address specified in the
instruction is the offset from a base address.

Relative offset. The difference between the actual address to be used in an instruction
and the current value of the program counter.

Relocatable. Can be placed anywhere in memory without changes; that is, a program
that can occupy any set of consecutive memory addresses.

Return (from a subroutine). Transfer control back to the program that originally
called the subroutine and resume its execution.

ROM. See Read-only memory.

Rotate. A shift operation that treats the data as if they were arranged in a circle; that is,
as if the most significant and least significant bits were connected either directly or
through a Carry bit.

Row major order. Storing elements of a multidimensional array in memory by
changing the indexes starting with the rightmost first. For example, if a typical
element is A(I,J,K) and the elements begin with A(O,O,O), the order is A(O,O,O),
A(O,O, I), ... ,A(O, I ,0), A(O, I, I), The opposite technique (changing the leftmost
index first) is called column major order.

RS-232 (or EIA RS-232). A standard interface for the transmission of digital data,
sponsored by the Electronic Industries Association of Washington, D.C. It has been
partially superseded by RS-449.

s
Scheduler. A program that determines when other programs should be started and

terminated.

Scratchpad. An area of memory that is generally easy and quick to use for storing
variable data or intermediate results.

SDLC. (Synchronous Data Link Control). The successor protocol to BSC for IBM
computers and terminals.

Semaphore. See Flag.

Serial. One bit at a time.

Serial interface. An interface between a CPU and input or output devices that handle
data serially. The SIO is a popular serial interface chip in the Z80 family. See also
UART

Setpoint. The value of a variable that a controller is expected to maintain.

GLOSSARY 483

Shift instruction. An instruction that moves all the bits of the data by a certain
number of bit positions, just as in a shift register.

Signed number. A number in which one or more bits represent whether the number is
positive or negative. A common format is for the most significant bit to represent
the sign (0 = positive, I negative).

Sign extension. The process of copying the sign (most significant) bit to the right as in
an arithmetic shift. Sign extensiofi preserves the sign when two's complement
numbers are being divided or normalized.

Sign flag. A flag that contains the most significant bit of the result of the previous
operation. It is sometimes called a negative flag, since a value of 1 indicates a
negative signed number.

Signfunction. A function that is 0 if its parameter is positive and I if its parameter is
negative.

SIO (Serial Input/ Output Device). A serial interface chip in the Z80 family. An SIO
can be used as an asynchronous or synchronous serial interface (i.e., as a DART or
DSRT) or as a data-link controller.

Size (of an array dimension). The distance in memory between elements that are
ordered consecutively in a particular dimension; the number of bytes between the
starting address of an element and the starting address of the element with an index
one larger in a particular dimension but the same in all other dimensions.

Software delay. A program that has no function other than to waste time.

Software interrupt. See Trap.

Software stack. A stack that is managed by means of specific instructions, as opposed
to a hardware stack which the computer manages automatically.

Source code (or source program). A computer program written in assembly language
or in a high-level language.

Space. The zero state on a serial data communications line.

Stack. A section of memory that can be accessed only in a last-in, first-out manner.
That is, data can be added to or removed from the stack only through its top; new
data are placed above the old data and the removal of a data item makes the item
below it the new top.

Stack pointer. A register that contains the address of the top of a stack.

Standard (or 8,4,2,1) BCD. A BCD representation in which the bit positions have the
same weight as in ordinary binary numbers.

484 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Standard teletypewriter. A teletypewriter that operates asynchronously at a rate of
ten characters per second.

Start bit. A I-bit signal that indicates the start of data transmission by an asynchro
nous device.

Static allocation (of memory). Assignment of fixed storage areas for data and pro
grams; an alternative is dynamic allocation, in which storage areas are assigned
when they are needed.

Status register. A register whose contents indicate the current state or operating mode
of a device.

Status signal. A signal that describes the current state of a transfer or the operating
mode of a device.

Stop bit. A I-bit signal that indicates the end of data transmission by an asynchro
nous device.

String. An array (set of data) consisting of characters.

String/unctions. Procedures that allow the programmer to operate on data consist
ing of characters rather than numbers. Typical functions are insertion, deletion,
concatenation, search, and replacement.

Strobe. A signal that identifies or describes another set of signals and can be used to
control a buffer, latch, or register.

Subroutine. A subprogram that can be executed (called) from more than one place in
a main program.

Subroutine call. The process whereby a computer transfers control from its current
program to a subroutine while retaining the information required to resume the
current program.

Subroutine linkage. The mechanism whereby a computer retains the information
required to resume its current program after it completes the execution of a
subroutine.

Suspend (a task). Halt execution and preserve the status of a task until some future
time.

Synchronization (or sync) character. A character that is used only to synchronize the
transmitter and the receiver.

Synchronous. Operating according to an overall timing source or clock, that is, at
regular intervals.

GLOSSAiN 485

Systems software. Programs that perform administrative functions or aid in the
development of other programs but do not actually perform any of the computer's
workload.

T
Tail (of a queue). The location of the oldest item in the queue, that is, the earliest

entry.

Task. A self-contained program that can serve as part of an overall system under the
control of a supervisor.

Task status. The set of parameters that specifies the current state of a task. A task can
be suspended and resumed as long as its status is saved and restored.

Teletypewriter. A device containing a keyboard and a serial printer that is often used in
communications and with computers. Also referred to as a Teletype (a registered
trademark of Teletype Corporation of Skokie, Illinois) or TTY.

Ten's complement. The result of subtracting a decimal number from zero (ignoring the
minus sign); the nine's complement plus one.

Terminator. A data item that has no function other than to signify the end of an array.

Threaded code. A program consisting of subroutines, each of which automatically
transfers control to the next one upon its completion.

Timeout. A period during which no activity is allowed to proceed; an inactive period.

Top of the stack. The address containing the item most recently entered into the
stack.

Trace. A debugging aid that provides information about a program while the pro
gram is being executed. The trace usually prints all or some of the intermediate
results.

Trailing edge (of a binary pulse). The edge that marks the end of a pulse.

Translate instruction. An instruction that converts its operand into the correspond
ing entry in a table.

Transparent routine. A routine that operates without interfering with the operations
of other routines.

Trap (or software interrupt). An instruction that forces a jump to a specific (CPU
dependent) address, often used to produce breakpoints or to indicate hardware or
software errors.

True borrow. See Borrow.

486 Z80 ASSEMBLY LANGUAGE SUBROUTINES

True comparison. A comparison that finds the two operands to be equal.

Two's complement. A binary number that, when added to the original number in a
binary adder, produces a zero result. The two's complement of a number may be
obtained by subtracting the number from zero or by adding I to the one's com
plement.

Two s complement overflow. A situation in which a signed arithmetic operation
produces a result that cannot be represented correctly; that is, the magnitude
overflows irito the sign bit.

u
UART (Universal Asynchronous Receiver/Transmitter). An LSI device that acts as

an interface between systems that handle data in parallel and devices that handle
data in asynchronous serial form.

Underflow (of a stack). Attempting to remove more data from a stack than has been
entered into it.

Unsigned number. A number in which all the bits are used to represent magnitude.

USART (Universal Synchronous/ Asynchronous Receiver/Transmitter). An LSI
device (such as the SIO) that can serve as either a DART or a DSRT

USRT (Universal Synchronous Receiver/Transmitter). An LSI device that acts as an
interface between systems that handle data in parallel and devices that handle data
in synchronous serial form.

Utility. A general-purpose program, usually supplied by the computer manufacturer
or part ofan operating system, that executes a standard or common operation such
as sorting, converting data from one format to another, or copying a file.

v
Valid data. A signal that is active when new data are available to the receiver.

Vectored interrupt. An interrupt that produces an identification code (or vector) that
the CPU can use to transfer control to the appropriate service routine. The process
whereby control is transferred to the service routine is called vectoring.

Volatile memory. A memory that loses its contents when power is removed.

w
Walking bit test. A procedure whereby a single I bit is moved through each bit

position in an area of memory and a check is made as to whether it can be read back
correctly.

GLOSSARY 487

Word. The basic grouping of bits that a computer can process at one time. When
dealing with microprocessors, the term often refers to a 16-bit unit of data.

Word boundary. A boundary between 16-bit storage units containing two bytes of
information. If information is being stored in word-length units, only pairs of bytes
conforming to (aligned with) word boundaries contain valid information. Mis
aligned pairs of bytes contain one byte from one word and one byte from another.

Word-length. A length of 16 bits per item.

Wraparound. Organization in a circular manner as if the ends were connected. A
storage area exhibits wraparound if operations on it act as if the boundary
locations were contiguous.

Write-only register. A register that the CPU can change but cannot read. Ifa program
must determine the contents of such a register, it must save a copy of the data
placed there.

z
Zero flag. A flag that is I if the last operation produced a result of zero and 0 if it did

not.

Zoned decimal. A binary-coded decimal format in which each byte contains a single
decimal digit.

Index

A
A register. See Accumulator
Abbreviations, recognition of, 289, 297, 298
Absolute branches, 3-4
Absolute value, 82-83, 84-85, 186, 222-23
Accumulator (register A), 5, 6, 7, 8, 9

clearing, 15
decimal operations, 73, 74, 124
decision sequences, 31
functions, 5, 6, 7
instructions, 7
special features, 2, 8
testing, 92

Accumulator rotates, 3, 20, 23
ADC, 42, 73-74

decimal version, 73
result, 42
rotate (ADC A,A), 91

ADC, 42, 73-74
logical shifts (A, HL, xy), 23, 35, 89

Addition
BCD, 72, 73, 248-50
binary, 16,41-42,72-74,228-30
decimal, 72, 73, 248-50
8-bit, 16, 72, 73
multiple-precision, 41-42, 228-30, 248-50
16-bit, 72-73, 74

Addition instructions
with Carry, 42, 73-74
without Carry, 16, 72-73

Address addition, 3,4, 33, 34
Address arrays, 35, 39
Address .format in memory (upside-down), 5, II
Addressmg modes, 10, 13

arithmetic and logical instructions, 2
autoindexing, 129-34
default (immediate), 17, 149
direct, 10-11, 13, 94, 95, 96, 97
immediate, II, 95
indexed, 3, 12, 14, 103, 127-29
~ndirect, 2, 3, 11-12, 13,94-95,96-97, 126-27
Jump and call instructions, 148
postindexed, 136-37
preindexed, 134-36
register, 2
register indirect, 2

Add/ subtract (N) flag, ix, 74
Adjust instructions, 124
AF register pair, 12
Aligning bit fields, 272
Alternate (primed) registers, 4, 96, 97

AND,85-86
clearing bits, 18, 19, 85
masking, 268, 271
testing bits, 18, 19

Apostrophe indicating ASCII character x
Arithmetic '

BCD, 72-78, 248-66
binary, 16-18,72-80,217-47
decimal, 72-78, 248-66
8-bit, 16-18, 72-80
multiple-precision, 41 -42,228-66
16-bit, 73-80, 217-27

Arithmetic expressions, evaluation of~ 132
Arithmetic instructions, 72-84

addressing modes, 2
8-bit, 445, 446
multiple operands, 16
16-bit, 143, 447

Arithmetic shift, 80, 89, 273-75
Arrays, 33-38, 128-37,319-55

addresses, 39, 129-30, 131,352-55
initialization, 195-97
manipulation, 33-38

ASCII, 150,463
assembler notations, x
control characters, 357
conversions, 172-94
table, 463

ASCII to EBCDIC conversion, 189-91
Assembler

defaults, x, 149, 155, 455
error recognition, 155-56
format, x, 455
pseudo-operations, x, 455
summary, 455

Autoindexing, 129-34
Autopostdecrementing, 133·.)4
Autopostincrementing, 130-31
Autopredecrementing, 131 -32
Autopreincrementing, 129-30
Auxiliary carry (Ac) flag, ix. See also Half-carry

I
B (in~icating binary number), x
B regIster, special features of, 5, 6, 9,30,32,54
Backspace, destructive, 362-63
Ba~e a~dress of an array or table, 33-35, 38-39
BC regIster pair, 5, 9, 12, 36
BCD (decimal) arithmetic, 72-78 248-66
BCD representation, 150 '
BCD to binary conversion, 170-71

489

490 ASSEMBLY L/,NGUJ.lGE SUt3ROUTINES

BDOS calls (in CP1M), 359-63, 366-67, 379-84
table, 357

Bidirectional mode of PIO, 62
Bidirectional ports, 61-62, 63-64, 158
Binary search, 331-35
Binary to BCD conversion, 167-69
BIT, 18, 19,93-94,341
Bit field extraction, 267-69
Bit field insertion, 270-72
Bit manipulation, 18-20, 85-87, 88, 93-94, 101,

102,267-72
instructions, 449

Block compare, 35-38, 288-91,444
flags, 37
registers, 36, 37

Block inputl output instructions, 54-55, 452
initialization, 385, 387
limitations, 54
registers, 54

Block move, 35-38, 99, 198-200
Block search, 444. See also Block compare
Boolean algebra, 18-20
Borrow, 27, 76
Branch instructions, 24-31, 102-18,450

absolute branches, 3-4
conditional branches, 104-18
decision sequences, 31
relative branches, 3-4, 32
signed branches, Il2-13
unconditional branches, 102-04
unsigned branches, 113-18

Buffered interrupts, 413-24
Byte shift, 181

C
C register, special use of~ 6, 9, 54
Calendar, 425-32
Call instructions, 118-20,451
Carry (C) flag, 453

adding to accumulator, 72
arithmetic applications, 41-42
borrow, 142
branches, 27-28
clearing, 101
comparison instructions, 27-28, 142, 144
decimal arithmetic, 72, 74
decrement instructions (no effect), 4
extending across accumulator, 84
increment instructions (no effect), 4
instructions affecting, 3,453
inverted borrow, 76, 142
logical instructions, 3
multiple-precision arithmetic, 41-42
position in F register, ix, 434
SBC,42

Carry (C) flag (continued)
shifts, 3, 20
subtracting from accumulator, 76
subtraction, 42, 76

Case statements, 39
Character manipulation, 39-40. See also String

manipulation
Checksum, 87. See also Parity
Circular shift (rotation), 20-22, 91-92, 282-87
Cleaning the stack, 49-51
Clear instructions, 100-OJ
Clearing accumulator, 100
Clearing an array, 196-97, 258, 262
Clearing bits, 18, 19,85, 101
Clearing flags, 86
Clearing memory, 258, 262
Clearing peripheral status, 61-62, 157, 158, 159,

389, 399
Clock interrupt, 425-32
Code conversion, 40-41, 167-94
Colon (delimiter after label), x
Command registec See Control register
Commands, execution of, 134
Comment, x
Common programming errors, 139-59

interrupt service routines, 158-59
110 drivers, 156-58

Communications between main program and
interrupt service routines, 159, 394-95,
413-14

Communications reference, 369
Compacting a string, 3Il
Comparison instructions, 81-82

bit-by-bit (logical EXCLUSIVE OR), 81
Carry flag, 27, 144
decimal, 266
multiple-precision, 245-47
operation, 26
16-bit, 81-82, 225-27
string, 288-91
Zero flag, 26

Complementing (inverting) bits, 18, 19, 20, 88
Complementing the accumulator, 87-88
Complement (logical NOT) instructions, 87-89
Concatenation of strings, 292-96
Condition code. See Flags; Status register
Conditional call instructions, 120
Conditional jump instructions, 104-18

execution time (variable), 450
Conditional return instructions, 120
Control characters (ASCII), 357

deletion, 362-63
printing, 360

Control register, 59-64, 157-58
Control signal, 57-58

Copying a substring, 302-07
Conventions, 5
CP, 26-29, 142, 144
CPD,36
CPDR,36
CPI, 36, 40, 350
CPIR, 36, 37, 40, 153
CP/ M operating system, 356-67, 379-84

BDOS functions, 357
buffer format, 367, 382
string terminator, 359, 363

CRC (cyclic redundancy check), 368-72
CTC (clock/timer circuit), 388, 427-28

D
DAA,151
Data direction (I/O control) register, 60
Data structures, 44-46, 148-49,414
Data transfer instructions, 94-102, 142
DB pseudo-operation, x
DE register pair, special features of~ 2, 5, 6, 9
Debugging, 139-59

interrupt service routines, 158-59
I/O drivers, 156-58

DEC, 4, 32
differences between 8- and 16-bit versions, 4
flags, 4

Decimal (BCD) arithmetic, 151,248-66
addition, 248-50
binary conversions, 167-71
comparison, 266
decrement by I, 78, 124
division, 260-65
8-bit, 72-78
increment by I, 77, 124
multibyte, 248-66
multiplication, 254-59
subtraction, 231-33
validity check, 124

Decimal default in assembler, 149, 150
Decision sequences, 31
Decrement instructions, 77-78

decimal, 78, 124
setting Carry, 78

Defaults in assembler, x, 149, 155, 455
DEFB pseudo-operation, x, 48
DEFS pseudo-operation, x
DEFW pseudo-operation, x, 48
Delay program, 391-93
Deletion of a substring, 308-12
Device numbers, 56-57, 373-84
Digit (4-bit) shift, 90, 152-53, 256, 257, 264
Digit swap, 90

INDEX 491

Direct addressing, 10··11, 13
arithmetic and logical instructions, lack of, 2
parentheses around addresses, x, 149, 155

Direction of stack growth, 46
Disassembly of numerical operation codes,

439-41
Division, 80

by 2,80,333
by 4,80
by 10, 168
by 100, 168
decimal, 260-65
multiple-precision binary, 239-44
remainder, sign of, 221
simple cases, 43, 80
16-bit, 220-24

DJNZ, 30, 32
Documentation of programs, 60
Double operands in arithmetic instructions, 16
Doubling an index, 35, 39
Drivers (I/O routines), 57, 373-74
Dynamic allocation of memory, 49,66, 125-26

E
EBCDIC to ASCII conversion, 192-94
EI,65, 124

position in return sequence, 121
8080 additions, 4, 22, 29, 74, 124

incompatibility (Parity flag), 29
Enabling and disabling interrupts, 124-25

accepting an interrupt, 64
DI,124
EI, 65, 124
interrupt status, saving and restoring, 124-25
interrupt status, testing, 105, 107, 124-25
unserviced output interrupt, 405
when required, 158-59

END pseudo-operation, x
Endless loop (wait) instruction, 123
EQU pseudo-operation, x
Equal values, comparison of~ 26-27, 142
Error-correcting codes. See CRC
Error-detecting codes. See Parity
Error handling, 162-63
Errors in programs, 139-59
Even parity (parity / overflow) flag, 29
EX, 64, 96, 97, 99, 121,444
EX DE,HL, 10
EX (SP), 12, 67, 119, 121
Exchange instructions, 99-100
Exchanging elements, 34
Exchanging pointers, 100
EXCLUSIVE OR function, 18, 19
EXCLUSIVE OR instructions, 87

492 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Execution time, reducing, 67-68
Execution times for instructions, 442-52
Extend instructions, 84
EXX, 64

F
F (flag) register, ix, 86-87, 95, 97, 4.34
FIFO buffer (queue), 45-46, 414
Fill memory, 99, 195-97
Flag register, ix, 86-87, 95, 97, 434
Flags, 434, 453

instructions, effects of, 3,453
loading, 95
organization in flag register, ix, 434
storing, 97
summary, 453
use, 31

Format errors, 149-51
Format for storing 16-bit addresses,S, II

H
H (half-carry) flag, 434
H (indicating hexadecimal number), x, 150
Handshake, 61-62
Head of a queue, 45, 414
Hexadecimal ASCII to binary conversion, 175-77
Hexadecimal to ASCII conversion, 172-74
Hexadecimal numbers, zero in front, 149
HL register pair, special features, 2, 8-9

use, 3, 5

IFF I (interrupt flip-flop I), 435
IFF2 (interrupt flip-flop 2), 105, 107, 12.3, 124-25,

435
Immediate addressing, II, 17

assembler notation, 17, 148
default, 17, 148
use of, II

Implicit effects of instructions, 152-53
INC, 3, 4

differences between 8- and 16-bit versions, 4
flags, 3,4

Increment instructions, 76-77
decimal, 77, 124
setting Carry, 76

IND,54
Indexed addressing, 33-35, 38-39, 127-29

data structures,S, 377-78, 384
generalized form, 3
limitations, 3
loading, 12
parameter retrieval, 47-48
storing, 14

Indexed call, 119-20, 352-55
leaving register pairs unchanged, 353-54

Indexedjump, 39, 103, 119
Indexing of arrays, .33-35, 201-16

byte arrays, 42-43, 201-04
multidimensional arrays, 209-16
two-dimensional byte array, 42-43,201-04
two-dimensional word array, 205-08
word arrays, 205-08

Index registers, 3
backup to HL, 9
features, 9
instructions, 6
secondary status, 4
uses, 5

Indirect addressing, .3, 11-12, 13, 126-27
indexed addressing with zero offset, 12
jump instructions, 102-03
multilevel versions, 127
subroutine calls, 119-20

Indirect call, 119-20, 352-55
Indirect jump, 102-03
INDR,54
INI, 54, 55
INIR, 54, 55
Initialization

arrays, 195-97
CTC, 388
indirect addresses, IS
interrupt service routines, 64-66
interrupt vectors, 398, 408, 418
110 devices, 63-64, 385-90
PIO, 63-64, .390, 41O-Il
RAM, 15-16, 195-97
SIO, 388-89, 400-02, 421-22

Initialization errors, 154
InputlOutput (ll 0)

block I10 instructions, 54-55
control block (lOCB), 373-84
device-independent, 56-57
device table, 56-57, 373-84
differences between input and output, 157, 395
errors, 156-58
indirect addressing, 51-52, 58
initialization, 63-64, 385-90
instructions, 51-55, 452
interrupt-driven, 64-66, 394-424
logical devices, 56-57
output, generalized, 365·-67
peripheral chips, 58
physical devices, 56-57
read-only ports, 53, 158
status and control, 57-58
terminal handler, 356-64
write-only ports, 53-54, 57-58, 62, 65-66, 157

Inserting a character, 181
Insertion into a string, 313-18
Instruction execution times, 442-52

Instruction set, 433-55
alphabetical list, 436-39
asymmetry, 5
numerical list, 439-41

Interrupt enable flip-flops (lFFI and
IFF2), 4, 105, 107, 123, 124-25, 435

Interrupt latency, 65
Interrupt response, 64, 435
Interrupts. See also Enabling and disabling

interrupts
buffered,413-24
elapsed time, 425-32
handshake, 394-424
initialization, 158,398,408,418,427-28
instructions, 446
latency, 65
modes, 64, 158, 398, 435
order in stack, 65
PIO, 60, 404-12, 459, 460, 461
programming guidelines, 64~66, 158-59
real-time clock, 425-32
reenabling, 64, 123, 159, 410
response, 64, 435
service routines, 394-432
structure, 435

Interrupt service routines, 394-432
CTC, 425-32
errors, 158-59
examples, 394-432
main program, communicating with, 159,

394-95,413-14
PIO,404-12
programming guidelines, 64-66, 158-59
real-time clock, 425-32
SIO, 394-403,413-24
terminating instructions, 66

Interrupt status, 5, 105, 107, 124-25
Interrupt vector register, 95, 97, 398, 435
Inverted borrow in subtraction, 75, 76, 142
Inverting bits, 18-20, 88
Inverting decision logic, 140, 142
I/O control block (lOeB), 373-84

example, 381
format, 374

1/°device table, 56-57, 373-84
I/O instructions, 452

J
JP, 24~31

addressing terminology, 148
block move or block compare, 37
overflow branches, 28-30, 1l2-13

JR, 25-29, 68
comparison with absolute branches, 3-4
flag limitations, 3-4

Jump and link, 103-04

INDEX 493

Jump instructions, 450
Jump table, 39, 103, 1l9, 149, 352-55

L
LD, 10-12, 13, 14-16

8080 instruction set, additions, 38
order of operands, 10, 141

LDD, 36, 37
LDDR, 36, 37, 181,200,318
LDl, 36, 37
LDIR, 36, 37, 99, 196,200,295,306, 31l, 318
Limit checking, 27-30
Linked list, 45-46,373,374,377-79
List processing, 45-46, 377-79
Load instructions, 10-16,94-96

8-bit, 442
flags, 3, 142
order of operands, 10, 141
16-bit, 443

Logical 1/°devices, 56-57, 373-84
Logical instructions, 85-94, 445

addressing modes, 2
Carry, clearing of, 3, 143
limitations, 2

Logical shift, 20, 22, 23, 89-90, 276-81
Logical sum, 87. See also Parity
Long instructions, 4
Lookup tables, 38-39, 41, 68, 69, 125, 189-94
Loops, 30, 32-33

reorganizing to save time, 67
Lower-case ASCII letters, 187-88

M
Masking bits, 18, 268, 271
Maximum, 325-27
Median (of 3 elements), 342-44
Memory fill, 99, 195-97
Memory-mapped I/O, 51-53
Memory test, 347-51
Memory usage, reduction of, 68-69
Millisecond delay program, 391-93
Minimum, 328-30
Missing addressing modes, 126-37
Missing instructions, 3, 71-126
Move instructions, 97-99
Move left (bottom-up), 198, 199-200
Move multiple, 99
Move right (top-down), 198, 199-200
Multibit shifts, 23, 273-87
Multibyte entries in arrays or tables, 34-35, 38-39,

125,205-16
Multidimensional arrays, 209-16
Multilevel indirect addressing, 127
Multiple names for registers, 2
Multiple-precision arithmetic, 41-42, 228-66
Multiple-precision shifts, 273-87

494 Z80 ASSEMBLY LANGUAGE SUBROUTINES

Multiple-precision shifts (continued)
arithmetic right, 273-75
digit (4-bit) left, 264
logical left, 276-78
logical right, 279-81
rotate left, 285-87
rotate right, 282-84

Multiplexing displays, 62
Multiplication, 42-43, 78-79

by a small integer, 42-43
by 10, 171, 185
by 2, 35
decimal, 254-59
multiple-precision, 234-38, 254-59
16-bit, 217-19

Multiway branches (jump table), 39, 103, 119,352-55

N
N (add/subtract) flag, 74,434
Negative, calculation of, 82-83, 222-23
Negative logic, 89, 157
Nested loops, 32-33
New line string, 356, 361-62
Nibble (4 bits), 171, 173
Nine's complement, 83
Non-maskable interrupt, 65, 66, 123
NOP, filling with, 195
Normalization, 90-91
Normalizing array bounds, 215-16
NOT instructions, 87-89, 268
Numerical comparisons, 26-31

o
One-dimensional arrays, 33-38
One's complement, 87-89
Operation (op) codes

alphabetical order, 436-39
numerical order, 439--41

OR, 18, 86-87, 268, 272
Ordering elements, 34
ORG pseudo-operation, x
OTDR,54
OTIR, 54, 387
OUTD,54
OUTI, 54, 55, 153
Output interrupts, unserviced, 395, 405
Output line routine, 365-67
Overflow (P/ V) flag, 3, 28

branches (PE, PO), 28, 29, 112
Overflow of a stack, 46, 108, 109
Overflow, two's complement, 28-30, 112-13
Overlapping memory areas, 198-200

p
P/ V (parity/overflow) flag, 434. See also Parity /

overflow flag
Parameters, passing, 46-51, 161

Parentheses around addresses (indicating "con
tents of"), x, 149, 155

Parity/ overflow flag, 3, 35-36, 434
block moves and compares, 35-36, 37
interrupt enable flag, 4, 124-25
overflow indicator, 28, 112, 225, 227
reversed polarity in block move and compare, 37

Passing parameters, 46-51, 161
memory, 47-48
registers, 46-47
stack, 49-51
subroutine convention, 161

PC register. See Program counter
Physical I/O device, 56-57
PIO (parallel input/ output device), 58-64, 457-62

addressing, 59-60
control lines, 61-62
initialization, 63-64, 390, 410-11
interrupt-driven 1/0,404-12
operating modes, 61-62
reference, 457-62
registers, 59-60

Pointer
exchanging, 99-100, 243, 265
loading, 96

Polling, 57-58
POP, 12
Pop instructions, 122-23
Position of a substring, 297-301
Postdecrement, 133-34
Postincrement, 12, 130-31
Postindexing, 136-37
Predecrement, 12, 131-32
Preincrement, 129-30
Preindexing, 134-36
Primed (alternate) registers, 4, 96, 97
Processor status (flag) register, 434
Program counter

CALL, 118-20
RET,120-21

Programmable I/O devices, 58
advantages, 58
CTC, 388, 427-28
initialization, 385-90
operating modes, 58
PIO, 58-64, 404-12, 457-62
510, 388-89, 394-403, 413-24

Programming model of microprocessor, 433
Pseudo-operations, x, 455
PUSH, 14, 141
Push instructions, 122

Q

Queue, 45-46, 414
Quicksort, 336-46
Quotation marks around ASCII string, x

R
RAM,481

filling, 99, 195-97
initialization, 15-16, 154
saving data, 13-14
testing, 347-51

Read-only memory, 48
Read-only ports, 53, 158
Ready flag (for use with interrupts), 394-95
Real-time clock, 425-32
Recursive program (quicksort), 3~6-46
Reenabling interrupts, 65, 124-25
Reentrancy, 47
Refresh (R) register, 95, 97
Register pairs, ix, 2,433

instructions, 6, 8
loading, II

Registers, 5-15
functions, 5
instructions, 6-8
length, ix
names, 2
order in stack, 65
passing parameters, 46-47
primed, 4, 96, 97
programming model, 433
saving and restoring, 65, 121
secondary, 4
special features, 8-9
transfers, 10

Register transfers, 10
Relative branches, 3-4, 32
RES, 18, 19, 53-54
Reset

CTC, 388
PIO, 61, 63
SIO, 389

Restart instructions, 64, 65, 451, 454
RETI,66
RETN,66
Return address, changing of, 120-21
Return instructions, 120-21
Return from interrupt instructions, 121
Return with skip instructions, 120-21
RL, 20, 53
RLC, 20
RLD,264
ROM (read-only memory), 48
Rotation (circular shift), 20-22, 24,91-92,282-87
Row major order (for storing arrays), 205, 209
RR, 20, 80
RRC, 20
RRD, 152-53, 257
RST,64,65,451,454

INDEX 495

s
Saving and restoring interrupt status, 5, 105, 107,

124-25
Saving and restoring registers, 12, 14, 64-66, 121
SBC A,A (extend Carry across A), 84
Searching, 35-38, 331-35
Secondary instructions, 4, 38
Secondary registers, 4
Semicolon indicating comment, x
Serial input/ output, 394-403,413-24
SET, 18-20, 53
Set instructions, 102
Set Origin (ORG) pseudo-operation, x
Setting bits to I, 18-20, 102
Setting directions

initialization, 158
PIO (control mode), 60, 63-64, 459

Setting flags, 86-87
Shift instructions, 20-24, 89-92, 448

byte, 181
diagrams, 21-23
digit, 152-53
multibit, 23, 273-87
multi byte, 273-87
32-bit left shift, 223
24-bit left shift, 180

Sign byte, 184-85
Sign extension, 20, 23··24, 273-75
Sign flag, 28-30, 142-43
Sign function, 84
Signed division, 220-24
Signed branches, 28-30,112-13
Signed numbers, 28-30
Signs, comparison of~ 29, 222
SIO (Serial Input/ Output Device), 388-89,

394- 403, 413-24
16-bit address format, 5
16-bit operations, 217-27

absolute value, 83
addition, 72-73, 74
average, 333
comparison, 81-82, 225··27
counter, 32-33, 35
division, 220-24
flags, effect on, 3
indexing, 128
instructions, 443, 447
multiplication, 217-19
pop, 12
push, 14
registers, ix
shifts, 89-92
subtraction, 27, 74-76
test for zero, 93

496 Z80 ASSEMBLY LANGUAGE SUBROUTINES

6800 microprocessor, differences from, 5
6809 microprocessor, differences from, 5
Skip instructions, 118, 120-21
SLA,20
Slow instructions, 4, 38
Software delay, 391-93
Software stack, 46
Sorting, 336-46

references, 338
SP register. See Stack pointer
Special cases, 162-63
Special features of processor, 2-5
SRA, 20, 23, 80
SRL, 20, 80
Stack, 12, 14,49-51

cleaning, 49, 50
data transfers, 12, 14
diagrams, 50, 51
downward growth, 5, 12
overflow, 46
passing parameters, 49-51
pointer, 6, 7, 12,49-51
POP, 12
PUSH,14
saving registers, 65
software, 46
underflow, 46

Stack pointer
automatic change when used, 12
comparison, 82
contents, 5, 12
decrementing, 12
definition, 12
dynamic allocation of memory, 49,66, 125-26
features, 9
incrementing, 14
moving to HL, 49
transfers, 98

Stack transfers, 12, 14, 46
Status bit. See Flags; Flag register
Status signals, 57-58
Status values in 1/0, 375
Store instructions, effect on flags (none), 3
String operations, 39-40, 288-318

abbreviations, recognition of, 289, 297, 298
compacting, 311
comparison, 288-91
concatenation, 292-96
copying a substring, 302-07
deletion, 308-12
insertion, 313-18
matching a substring, 300
position of substring, 297-301
search, 39-40

Strobe, 61-62
SUB, single operand in, 16
Subroutine call, 49, 118-20

saving memory, 68-69
variable addresses, 118-20

Subroutine linkage, 49, 103-04, 161
Subscript, size of, 206, 209, 210
Subtraction, 74-76

BCD, 74-76, 231-33
binary, 74-76, 231-33
Carry flag, 27, 76
decimal, 74-76, 231-33
8-bit, 74-76
inverted borrow, 75, 76, 142
multiple-precision, 231-33
reverse, 75
16-bit, 27, 74-76

Subtraction instructions, 74-76
in reverse, 75
with borrow, 76
without borrow, 74-75

Summation, 33
binary, 33
8-bit, 33, 319-21
16-bit, 322-24

Systems programs, conflict with, 140

T
Table, 38-39, 41, 68, 69,125, 189-94
Table lookup, 38-39, 41, 125
Tail of a queue, 414
Ten's complement, 82-83
Terminal 1/0, 356-67
Testing, 92-94

array, 241, 262
bits, 18, 19, 25-26, 85
bytes, 92-93
multiple-precision number, 241, 262
16-bit number, 93

32-bit left shift, 223
Threaded code, 44
Threshold checking, 27-31
Timeout, 391-93
Timing for instructions, 442-52
Top of stack, 12
Transfer instructions, effect on flags, 3
Translate instructions, 125
Trivial cases, 162
True comparison, 35, 38
24-bit left shift, 180
Two-byte entries, 34-35, 38-39, 125
Two-dimensional arrays, 42-43, 201-08
Two's complement, 82-83
Two's complement overflow, 28-30, 112-13

u
Unconditional jump instructions, 102-04
Underflow of stack, 46
Upside-down addresses, 5, 11

V
Validity check for BCD number, 124

w
Wait instructions, 123
Walking bit test, 347-49
Wraparound of buffer, 414
Write-only ports, 53-54, 57-58,62, 65-66, 157

INDEX 497

z
Zero flag, 142

block compares, 37
block 1/0,54
branches, 142
comparisons, 26
inversion in masking, 19,25
load instructions, 3
masking, 19,93
position in flag register, ix, 434
transfer instructions, 3
uses, 25-27, 31

Zero in front of hexadecimal numbers, 149

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf
	289.pdf
	290.pdf
	291.pdf
	292.pdf
	293.pdf
	294.pdf
	295.pdf
	296.pdf
	297.pdf
	298.pdf
	299.pdf
	300.pdf
	301.pdf
	302.pdf
	303.pdf
	304.pdf
	305.pdf
	306.pdf
	307.pdf
	308.pdf
	309.pdf
	310.pdf
	311.pdf
	312.pdf
	313.pdf
	314.pdf
	315.pdf
	316.pdf
	317.pdf
	318.pdf
	319.pdf
	320.pdf
	321.pdf
	322.pdf
	323.pdf
	324.pdf
	325.pdf
	326.pdf
	327.pdf
	328.pdf
	329.pdf
	330.pdf
	331.pdf
	332.pdf
	333.pdf
	334.pdf
	335.pdf
	336.pdf
	337.pdf
	338.pdf
	339.pdf
	340.pdf
	341.pdf
	342.pdf
	343.pdf
	344.pdf
	345.pdf
	346.pdf
	347.pdf
	348.pdf
	349.pdf
	350.pdf
	351.pdf
	352.pdf
	353.pdf
	354.pdf
	355.pdf
	356.pdf
	357.pdf
	358.pdf
	359.pdf
	360.pdf
	361.pdf
	362.pdf
	363.pdf
	364.pdf
	365.pdf
	366.pdf
	367.pdf
	368.pdf
	369.pdf
	370.pdf
	371.pdf
	372.pdf
	373.pdf
	374.pdf
	375.pdf
	376.pdf
	377.pdf
	378.pdf
	379.pdf
	380.pdf
	381.pdf
	382.pdf
	383.pdf
	384.pdf
	385.pdf
	386.pdf
	387.pdf
	388.pdf
	389.pdf
	390.pdf
	391.pdf
	392.pdf
	393.pdf
	394.pdf
	395.pdf
	396.pdf
	397.pdf
	398.pdf
	399.pdf
	400.pdf
	401.pdf
	402.pdf
	403.pdf
	404.pdf
	405.pdf
	406.pdf
	407.pdf
	408.pdf
	409.pdf
	410.pdf
	411.pdf
	412.pdf
	413.pdf
	414.pdf
	415.pdf
	416.pdf
	417.pdf
	418.pdf
	419.pdf
	420.pdf
	421.pdf
	422.pdf
	423.pdf
	424.pdf
	425.pdf
	426.pdf
	427.pdf
	428.pdf
	429.pdf
	430.pdf
	431.pdf
	432.pdf
	433.pdf
	434.pdf
	435.pdf
	436.pdf
	437.pdf
	438.pdf
	439.pdf
	440.pdf
	441.pdf
	442.pdf
	443.pdf
	444.pdf
	445.pdf
	446.pdf
	447.pdf
	448.pdf
	449.pdf
	450.pdf
	451.pdf
	452.pdf
	453.pdf
	454.pdf
	455.pdf
	456.pdf
	457.pdf
	458.pdf
	459.pdf
	460.pdf
	461.pdf
	462.pdf
	463.pdf
	464.pdf
	465.pdf
	466.pdf
	467.pdf
	468.pdf
	469.pdf
	470.pdf
	471.pdf
	472.pdf
	473.pdf
	474.pdf
	475.pdf
	476.pdf
	477.pdf
	478.pdf
	479.pdf
	480.pdf
	481.pdf
	482.pdf
	483.pdf
	484.pdf
	485.pdf
	486.pdf
	487.pdf
	488.pdf
	489.pdf
	490.pdf
	491.pdf
	492.pdf
	493.pdf
	494.pdf
	495.pdf
	496.pdf
	497.pdf
	498.pdf
	499.pdf
	500.pdf
	501.pdf
	502.pdf
	503.pdf
	504.pdf
	505.pdf
	506.pdf
	507.pdf
	508.pdf
	509.pdf

